HYPERTROPHIC OBSTRUCTIVE CARDIOMYOPATHY

Michelle Paulson
Morning Report 7/21/04
HOCM

- Nondilated cardiac hypertrophy, in the absence of another disease
- Dynamic LV outflow obstruction gradient (between LV outflow tract and aorta) which may or may not be present at rest, but can become apparent with changes in hemodynamics
- 75% of patients do NOT have a resting gradient and this may develop at any age
Autosomal dominant missense mutation of gene encoding cardiac sarcomere

Clinically apparent in approximately 1 in 350-625 people

10 genes identified thus far which contribute e.g. β-myosin heavy chain, cardiac troponin T and myosin-binding protein C (70-80% of cases)

- Certain mutations of β-myosin heavy chain and troponin T associated with higher rates of premature death
Sarcomere. Gene with mutations associated with HCM in red.
Cannon Ro. NEJM 2003; 349:1016.
Pathology

- Mutations lead to impaired contractility which in turn causes upregulation of growth factors leading to hypertrophy and fibrosis="sarcomere disarray"

- Microvascular disease from abnormal coronary arteries with increased intimal and medial collagen and disproportion between heart muscle and vasculature
Symptoms

Phenotypic Diversity

- Asymptomatic
- Dyspnea (most common)
- Chest pain
- Palpitations
- Pre / syncope (15-25%)
- Orthopnea / PND
Complications

- Mitral valve disease--mechanical dysfunction from hypertrophy, papillary muscle insertion abnormality
- Congestive heart failure (5X more likely than general population)
- Atrial fibrillation (decompensation easier) and higher risk of thromboembolism
- Endocarditis (esp. mitral valve)--need to give antibiotics prophylactically
- Sudden cardiac death via ventricular arrhythmias
Clinical Exam Findings

- Harsh crescendo-decrescendo systolic ejection murmur best heard at apex and LLSB
- Increases with changing from squatting to standing position, Valsalva, NTG,
- Decreases with changing from standing to sitting, handgrip, leg elevation
- Radiates to axilla/base (less likely to radiate to neck), +/- S4 and LV lift
- Carotid pulse brisk upstroke
Diagnostic Tools

- **EKG**--LVH, inf/lat Q waves, LAD, LAE/RAE
- **2D TTE**--asymmetric hypertrophy, septum usually thicker than free wall
- **Continuous wave Doppler Echo**--resting high velocity, late peaking jet across LV outflow tract (25% of pts)
- **Exercise with Echo**--may identify obstruction that is not apparent at rest
- **Cardiac Catheterization**--measure gradient and provoke with Valsalva, amyl nitrate inhalation or infusion of isoproterenol
- **Holter monitor/Loop monitor**--not diagnostic but can help document ventricular tachyarrhythmias
TTE showing LV outflow obstruction in systole.

Nishimura and Holmes. NEJM 2004; 350: 1320.
Definitions based on TTE

- OBSTRUCTIVE = 30 mmHG peak outflow gradient at rest or >50 with provocation

- HYPERTROPHY = LV wall thickness > 13mm and severe if >30mm

\[G = 4v \]

(modified Bernoulli equation)

\[G = \text{LV outflow tract gradient} \]

\[V = \text{LV outflow tract velocity} \]
Evaluation of Relatives

- Should screen all 1st degree family members with history / physical, EKG, Echo
 - If between ages 12-18, needs annual assessment
 - If over age 18, need reevaluation every 5 years

Genetic mutation analysis is possible
Overall Population With Hypertrophic Cardiomyopathy (HCM)

- Genotype-Positive Phenotype-Negative
 - Longitudinal Follow-up

- None or Mild Symptoms
 - No Treatment or Drug Therapy

- Progressive Heart Failure Symptoms
 - Drug Therapy

High Risk of Sudden Death
- Implantable Cardioverter-Defibrillator

Atrial Fibrillation
- Pharmacological Rate Control
- Cardioversion
- Anticoagulation

Drug-Refractory Heart Failure Symptoms

Alternatives to Surgery
- Alcohol Septal Ablation
- Chronic Dual-Chamber Pacing

Obstructive HCM (Rest or Provocation)
- Ventricular Septal Myotomy-Myectomy

Nonobstructive HCM (Rest and Provocation)
- Heart Transplantation (for End-Stage Systolic Dysfunction)

Maron. JAMA 287.
BEST INITIAL APPROACH TO MANAGE SYMPTOMS

Goal—block catecholamines and slow heart rate to increase filling

- Beta Blocker: 60-80% response rate
- Verapamil: Used if contraindication or intolerance to BB, however patients with severe symptoms, pHTN, severe outflow obstruction, there has been an association with verapamil and sudden death
- Disopyramide: add to BB if BB alone is not controlling symptoms
- Amiodarone has not been studied to see if can reduce SCD
Other Things to Watch For:

- Avoid dehydration
- Correct anemia
- Avoid drugs that alter decrease preload or afterload
 - eg. ACE-I, nitroglycerin, diuretics
What if medical management fails?

Other options:

- Surgical Septal Myectomy
- Septal Ablation
- Dual Chamber Pacemaker

NONE HAVE SHOWN TO DECREASE MORTALITY
Myectomy “Morrow procedure”

- Gold standard for symptomatic HOCM
- Resects basal septum, can combine with mitral valve surgery
- 90% who undergo procedure are subsequently symptom free--associated with increase peak oxygen consumption and decrease in NYHA classification
- Peri-operative mortality 1-2%
- Follow up studies 30 years out suggest patients still have improved symptoms and no recurrence of obstruction
Myectomy Procedure

Nishimura and Holmes. NEJM 2004; 350: 1320.
Septal Ablation

- Infusion of 100% alcohol into septal artery which supplies the myocardium along the outflow tract, thereby causing a myocardial infarction in this area which leads to thinning and decreasing obstruction.
- Complicated by complete heart block (also vfib, VSD, large MI, perforation).
- Can be used with contrast echocardiogram to localize area perfused by septal branch prior to alcohol administration.
- Consider if CHF NYHA III-IV, outflow gradient >50, septal wall >18mm.
Alcohol-induced Septal Ablation

Braunwald. NEJM 2002; 347: 1306.
Dual Chamber Pacemaker

- Unclear mechanism of causing symptomatic relief, may alter contraction of basal septum with less outflow obstruction
- Large placebo effect--still have large residual gradient after pacing (30-50mmHg)
- Follow up in 5 years--<40% still reported improvement in symptoms
- May be useful in pt cannot undergo surgery or needs pacer because of bradycardia with medical therapy
Summary of non-pharmacological therapies.
Nishimura and Holmes. NEJM 2004; 350:1320.
Sudden Death and LVH

- 480 patients with HCM, placed into categories based on LV wall thickness:
 - <15mm, 16-19mm, 20-24mm, 25-29mm, 30mm+
 - Follow up of 6.5 years
 - 65/480 died = 14% (23 died suddenly)
 - When LV thickness accounted for, risk of SCD increased with thickness
Implanted Cardiac Defibrillator

- If there is a risk for sudden death; unfortunately, no specific guidelines exist for who is a candidate.
- Currently driven by clinical history.
- No need to do EP study because inducing VT/Vfib during the study does not predict outcome of sudden death.

Features of Hypertrophic Cardiomyopathy That Increase the Risk of Cardiovascular Events.

Genetic	Family history of sudden death
	Specific mutations in sarcomeric proteins
Clinical	Resuscitation after cardiac arrest
	Recurrent syncope
	Ventricular tachycardia on monitoring
Morphologic	Extreme left ventricular hypertrophy (>3 cm)
Hemodynamic	Left ventricular outflow pressure gradient (>30 mm Hg)
	Fall in blood pressure during exercise
	Limited myocardial flow reserve

NEJM.
ACC/AHA Guidelines

- CLASS II B recommendation by ACA/AHA/NASPE 2002 guidelines regarding ICD placement

(Class II B = Usefulness/efficacy less well established by evidence/opinion.)

"Familial or inherited conditions with a high risk for life threatening ventricular tachyarrhythmias eg. long QT or hypertrophy cardiomyopathy"
ICD / Sudden Death / HCM

- Retrospective study of 128 patients to evaluate efficacy of ICD to prevent SCD, follow up 3.1 years
- Total of 29/128 patients had appropriate firing (23%), 21 of those stored data that showed VT/VF instigator for discharge
- 43 placed for secondary prophylaxis (eg. survived cardiac arrest or had sustained VT); 19/43 had appropriate discharge of ICD (44%)
- 85 placed for primary prophylaxis for syncope, family hx of SCD, NSVT, LV wall thickness > 30mm; 10/85 had appropriate discharge of ICD (12%)
- Total of inappropriate firings 25%
- Complications in 18/128--lead malfunction, infection, hemorrhage requiring thoractomy, subclavian thrombus, hematoma

Maron NEJM 2000.
The Future

- Losartan decreases fibrosis and down regulates growth factor β in mice trials
- Simvastatin decreases fibrosis and hypertrophy in rabbits by 50%
- Routine Screening-not feasible currently
 - DNA microarrays, mass spectrometry

NEED FOR HUMAN TRIALS
References:

Marian AJ and Roberts R. To screen or not is not the question—it is when and how to screen. Circulation 2003; 107: 2171-2174.

References:

