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Cytokine Homologs of Human Gammaherpesviruses
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Gammaherpesviruses such as Epstein-Barr virus (EBV, human herpesvirus 4) and Kaposi sarcoma-associated
herpesvirus (KSHV, human herpesvirus 8) establish lifelong infection in the host. To further this lifestyle, they
encode homologs of cellular cytokines and cytokine receptors with the overarching goal to escape from or to
blunt host antiviral defenses. EBV encodes mimics of human interleukin (hIL)-10 and a G protein-coupled
receptor protein with sequence similarity to CXCR, whereas KSHV encodes homologs of hIL-6, 3 CC chemokine
ligands, and a G protein-coupled receptor with sequence similarity to IL8 receptor alpha. This review focuses on
the EBV IL-10 homolog and the KSHV IL-6 homolog with respect to virus biology and pathogenesis of the virus-
associated diseases.

Introduction

The host keeps guard against pathogens by deploying
innate and adaptive immune responses. The innate im-

mune system defends the host by impeding viral replication
and activating the adaptive antiviral responses, and the
adaptive immune response provides the host with the ability
to neutralize virus particles and to remember a specific virus
attack. For successful replication and transmission, viruses
must subvert, blunt, or escape host antiviral activities. To
accomplish this goal, viruses evolved immune evasion
strategies, which include viral mimics of host cytokines and/
or cytokines receptors. These strategies are essential for
viruses that establish a lifelong presence in the host. This is
termed persistent infection if there is consistent evidence of
circulating virus or viral shedding of the same strain in the
absence of reinfection, and latent infection if the virus can
only be intermittently detected in blood, lymph, or body
secretions.

Gammaherpesvirus infections are prime examples of la-
tent pathogen infections. The human gammaherpesviruses
include Epstein-Barr virus (EBV, also known as human
herpesvirus 4) and Kaposi sarcoma-associated herpesvirus
(KSHV, or human herpesvirus 8). These are linked to human
cancers of the immune compartment. EBV is associated with
the development of endemic Burkitt’s lymphoma, classic
Hodgkin lymphoma, lymphoepithelioma-like nasopharyn-
geal carcinoma, and a certain subtype of gastric adenocar-
cinoma (IARC 2010). KSHV is associated with Kaposi
sarcoma (KS), primary effusion lymphoma (PEL), and the
plasmablastic variant of multicentric Castleman disease
(MCD) and in some instances diffuse large B-cell lymphoma
(Carbone and others 2009). Both viruses have a large double-

stranded DNA genome (*172 kb for EBV and *145 kb for
KSHV) and encode over 80 open reading frames (ORFs).
Many of the proteins, which are encoded by these ORFs, are
highly immunogenic, particularly if present in the virions.
Virions are produced during the lytic (productive) cycle,
whereas only a very limited set of proteins is translated
during the latent infection phase.

EBV encodes 3 host cytokine or chemokine receptor
mimics. They are an interleukin (IL)-10 homolog encoded by
BamHI-C fragment rightward reading frame 1 (BCRF1)
(Moore and others 1990), a CXCR homolog encoded by
BILF1 (Paulsen and others 2005), and EBV-induced gene 3
(EBI3), an IL-12p40-related protein, which forms hetero-
dimeric IL-27 with p28 (IL-30), which is itself an IL-12p35–
related polypeptide (Pflanz and others 2002).

KSHV encodes an IL-6 homolog (Moore and others 1996;
Neipel and others 1997; Nicholas and others 1997), an IL-8
receptor alpha homolog (ORF74) (Cesarman and others 1996;
Bais and others 1998), and 3 CC-chemokine ligands (Moore
and others 1996; Boshoff and others 1997; Sozzani and others
1998; Dairaghi and others 1999; Stine and others 2000). Other
immune evasion strategies by gammaherpesviruses have
been reviewed elsewhere (Stevenson 2004; Nicholas 2005;
Coscoy 2007; Liang and others 2008; Blake 2010; Lee and
others 2010; Rowe and Zuo 2010). In this review, we focus on
roles of viral IL (vIL)-6 and vIL-10 with respect to the
pathobiology of gammaherpesviruses.

EBV IL-10 Homolog

IL-10 was originally reported as cytokine synthesis in-
hibitory factor (CSIF) produced by T helper 2 (TH2) cells,
which inhibited TH1-derived gamma interferon (IFN-g)
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production (Fiorentino and others 1989). It is now known
that IL-10 is not just TH2-specific, but expressed by many
different kinds of immune cells including TH1, TH17, TReg, B
cells, macrophages, and myeloid dendritic cells, indicating its
role in controlling diverse immune responses. In addition to
IFN-g, IL-10 inhibits the expression of IL-1a, IL-1b, IL-6, IL-
12, IL-18, granulocyte/macrophage colony stimulating fac-
tor, tissue necrosis factor, and others. Human IL-10 (hIL-10)
has immunosuppressive properties as well as im-
munostimulatory properties. On the one hand, it functions to
deactivate macrophages (Bogdan and others 1991) and it
inhibits antigen-specific T-cell proliferation by interfering
with the monocytes’ antigen-presenting capacity via down-
regulation of class II major histocompatibility complex
(MHC II) expression (de Waal Malefyt and others 1991). On
the other hand, hIL-10 cooperates with transforming growth
factor b to stimulate anti-CD40-activated naive human B cells
to secret immunoglobulin A (Defrance and others 1992).

The EBV BCRF1 gene product (vIL-10) shares 70% and
80% amino acid sequence identity with mouse and hIL-10/
CSIF, respectively (Moore and others 1990; Vieira and others
1991). The vIL-10 promoter is highly methylated and inactive
in latently infected B cells (Niller and others 2001) and the
vIL-10 protein is expressed late during the lytic life cycle
(Hudson and others 1985). Yet, the vIL-10 is expressed also
within the first 6–9 h after infection of human B cells
(Miyazaki and others 1993; Touitou and others 1996). This
divergent regulation represents a common strategy of both
the KSHV and the EBV IL homologs. Even though the vILs
as well as the viral chemokine receptor homologs are typi-
cally classified as ‘‘lytic’’ cycle viral genes, they are also
transcribed in response to specific host cell signaling events
outside the rigid framework of the canonical transcriptional
cascade that governs herpesvirus lytic replication (Chatterjee
and others 2002). Thus, one might speculate that they have a
purpose in latent persistence in addition to their role in
support of viral replication and progeny production.

The EBV vIL-10 inhibits IFN-g synthesis by T-cell-
dependent antigen-stimulated mouse Th1 cells and
phytohemagglutinin-activated human peripheral blood
mononuclear cells (PBMCs) analogous to hIL-10 (Hsu and
others 1990; Moore and others 1990). The inhibition of IFN-g
from IL-2-activated PBMCs suggests that the vIL-10 may also
act on natural killer cells (NK), which are the major source of
IL-2 in these assays (Hsu and others 1990). NK and cytotoxic
T-cell (CTL) activity was reduced in mice infected with a
recombinant vaccinia virus expressing the vIL-10 (Kurilla
and others 1993). The EBV vIL-10 cooperates with hIL-10 to
downregulate the peptide transporter protein (TAP1), which
in turn limits antigen presentation mediated by MHC I
molecules. This may influence the CTL’s role in recognition
of EBV-infected B cells (Zeidler and others 1997).

Both hIL-10 and vIL-10 enhance proliferation and differ-
entiation of EBV-negative, normal, mature B cells, but vIL-10
does not upregulate MHC II expression (Go and others 1990;
Rousset and others 1992). Human and mouse IL-10 stimulate
the proliferation of mature and immature T cells, whereas
their EBV counterpart does not (MacNeil and others 1990).
This is probably due to its lower affinity for the IL-10 re-
ceptor a (IL-10Ra). A related line of inquiry demonstrated
that the EBV vIL-10 had 1,000-fold lower affinity for the IL-
10R and this resulted in a much reduced ability to inhibit
IL-2 secretion from CD4 + T cells (Liu and others 1997). Thus

emerges a picture wherein the EBV vIL-10 displays all the
inhibitory phenotypes of hIL-10, but is severely impaired
with regard to its pro-proliferative capabilities (Fig. 1).

A possible explanation for the lack of pro-proliferative
activity toward T cells is a single amino acid change at po-
sition 87. An isoleucine is required at position 87 for hIL-10
immunostimulatory functions. When this residue was
changed into alanine, the immunostimulatory activity of hIL-
10 was destroyed (Ding and others 2000). The EBV vIL-10
has an alanine at the corresponding position in vIL-10. The
crystal structure of vIL-10 reveals that two 17-kDa poly-
peptides form a homodimer-like hIL-10, but with subtle
changes in conformation. The resulting orientation change of
vIL-10 on a soluble IL-10R1 fragment (sIL-10R1) may cause
the reduced affinity of vIL-10 for sIL-10R1 (Zdanov and
others 1997; Yoon and others 2005).

The lack of immunostimulatory potency has prompted
explorations of vIL-10 as a possible therapeutic for autoim-
mune diseases or chronic inflammation. In animal models,
adenoviral-mediated transfer of vIL-10 was effective in in-
hibiting collagen-induced arthritis (Apparailly and others
1998; Lehrman and others 2005; Keravala and others 2006),
ameliorating symptoms of autoimmune ocular diseases (De
Kozak and others 2002; Verwaerde and others 2003; Zhu and
others 2004), and suppressing autoimmune diabetes via in-
hibition of TH1 cell activation (Kawamoto and others 2001;
Yang and others 2002b). The EBV IL-10 homolog also re-
duced IL-1 levels in a particle-associated inflammation
mouse air pouch model (Yang and others 2002a) and sup-
pressed crescentic glomerulonephritis in a rat model
(Higuchi and others 2003). Because of the lack of im-
munostimulatory functions, vIL-10 had advantages over
hIL-10 in transplantation models including a rat kidney
transplantation model, a mouse cardiac allograft model, and
a mouse hematopoietic stem cell therapy (Qin and others
1996; Salgar and others 2004; Chen and others 2007).

How the EBV IL-10 homolog contributes to EBV-
transformed B-cell proliferation remains to be determined.
On the one hand, lymphoblastoid cell lines, which are in-
fected with EBV recombinants devoid of vIL-10, show no
difference in latent infection, virus replication, and tumori-
genicity in SCID mice (Swaminathan and others 1993). On
the other hand, oligonucleotides against vIL-10 mRNA in-
hibit aspects of EBV-dependent B-cell transformation
(Miyazaki and others 1993), and the addition of exogenous
vIL-10 enhances growth transformation of B cells by EBV
(Stuart and others 1995) as well as the initial immortalization
of EBV-infected B lymphocytes, which is dependent on vIL-
10 (Irons and Le 2008).

KSHV IL-6 Homolog

IL-6 is a cytokine with pro- and anti-inflammatory func-
tions. It was originally reported as a B-cell stimulating and
differentiating factor secreted by T cells, which induces ter-
minal maturation into plasma cells (Okada and others 1983;
Hirano and others 1986; Muraguchi and others 1988). It is
now known that IL-6 is not only secreted by T-cells, but also
by a variety of other cells including macrophages, fibro-
blasts, synovial cells, endothelial cells, glial cells, and kera-
tinocytes. IL-6 folds into a 4-helix bundle, which is the
common motif for helical cytokines (Bazan 1990). The IL-6
family of cytokines comprises IL-11, oncostatin M, and
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leukemia inhibitory factor in addition to IL-6. Cytokines of
the IL-6 family act via receptor complexes containing a
signal-transducing protein, gp130. hIL-6 binds to 2 domains
of gp130 and a specific a subunit of IL-6R (IL-6Ra/gp80) to
initiate intracellular signal transduction (Grotzinger and
others 1997). Dysregulated expression of IL-6 is involved in
inflammation and hematopoietic malignancies, such as car-
diac myxoma, Castleman disease (CD), rheumatoid arthritis
(RA), and systemic-onset juvenile idiopathic arthritis (SoJIA).
Therapeutic approaches targeted against IL-6 and/or IL-6R
complexes are in clinical testing (eg, humanized anti-IL6:
Sirukumab, ALD518, and others). A humanized anti-IL-6R
antibody, tocilizumab, has shown efficacy against immune-
mediated inflammatory diseases such as RA, SoJIA, systemic
lupus erythematous, adult-onset Still disease, Takayasu ar-
thritis, and systemic sclerosis as well as MCD (Murakami
and Nishimoto 2011).

The KSHV IL-6 homolog (vIL-6) shows only 24.8% amino
acid identity to hIL-6 (Moore and others 1996; Neipel and
others 1997; Nicholas and others 1997). However, its crystal
structure follows the canonical 4-helix bundle fold (Chow
and others 2001; Boulanger and others 2003). The vIL-6 is an
early lytic gene; however, the vIL-6 can also respond to cell
signaling events directly and discordantly from other viral
lytic genes, suggesting vIL-6’s roles in survival of KSHV-
infected B cells (Chatterjee and others 2002; Chang and
others 2005; Chandriani and Ganem 2010). In MCD, the vIL-
6 is constitutively expressed in virally infected B cells and
can thus be considered a latent gene in this population. Host
IFN-a signaling is inhibited by vIL-6. However, IFN-a itself
can activate vIL-6 through an IFN-stimulated response ele-
ment in the vIL-6 promoter. Subsequently, the expression of
vIL-6 acts in a negative feedback loop to block IFN-a anti-
viral signaling (Chatterjee and others 2002).

Analogous to its cellular counterpart, vIL-6 functions to
transduce signals via gp130 (Molden and others 1997) and
activates CCAAT/enhancer-binding protein transcription
factors, Janus kinase/signal transducer and activator of
transcription, and mitogen-activated protein kinase signaling
pathways (Osborne and others 1999; Hideshima and others
2000).

The first important difference between hIL-6 and vIL-6 is
that vIL-6 requires only gp130 for signaling. This is unlike
hIL-6, which needs the high-affinity coreceptor IL-6R (gp80)
in complex with gp130 (Molden and others 1997; Chow and
others 2001). The crystal structure of the vIL-6 signaling
complex shows the vIL-6 dimer forming a tetramer with
gp130 (vIL-62:gp1302) (Chow and others 2001). This led to
advanced structural and functional studies (Li and others
2001; Li and Nicholas 2002; Boulanger and others 2004;
Dela Cruz and others 2004, 2009; Chen and Nicholas 2006;
Hu and Nicholas 2006). The replacement of hIL-6 with the
corresponding residues of the gp130 contact site III and BC
loop of vIL-6 confers gp80 independence to the hIL-6
(Adam and others 2009). Based on these observations, one
can speculate that the conformational change between hIL-6
and vIL-6 is a key factor in determining the gp80-
independent binding of the vIL-6 to gp130. In fact, vIL-6
may exist in multiple signaling complexes, a gp80-
independent tetramer (vIL-62:gp1302) and gp80-dependent
hexamer (gp1302:gp802:vIL-62).

The second important difference between hIL-6 and vIL-6
is that most vIL-6 is retained in endoplasmic reticulum (ER),

implying autocrine stimulation as the dominant mode of
action (Chen and others 2009b, Fig. 1). An ER chaperone
protein, calnexin, interacts with vIL-6 to mediate proper
protein folding (Chen and others 2009a). This is in contrast to
hIL-6, which is quickly secreted (Rose-John and others 1993).

These 2 biochemical differences translate into functional
and biological differences. The vIL-6 stimulates intracellular
signaling in human B cells, which are IL-6R (gp80) negative
and respond poorly or not at all to hIL-6 (Breen and others
2001). In the presence of gp80, the vIL-6 can support growth
of IL-6/IL-3-dependent gp80 - /gp130 + BAF-130 cells better
than its human counterpart (Hu and Nicholas 2006).

The KSHV vIL-6 augments growth and survival of PEL
cell lines ( Jones and others 1999; Chatterjee and others 2002)
and increases tumorigenicity in athymic nude mice (Aoki
and others 1999). The vIL-6 is also important for PEL tu-
morigenesis, because it induces VEGF-1, a paracrine factor
that has been implicated in the pathogenesis of PEL and KS
(Aoki and others 1999; Aoki and Tosato 1999; Jones and
others 1999). Thus, it contributes to the transforming potency
of KSHV. Neutralizing antibodies against vIL-6, IL-6R, or
gp130 reduced the growth of some PEL cell lines (Drexler
and others 1999; Jones and others 1999), and a genetic
knockdown of vIL-6 expression using short hairpin RNA
(shRNA) or antisense peptide-conjugated oligomers leads to
the reduced growth of PEL (Zhang and others 2008; Chen
and others 2009b). Conversely, exogenously supplied hIL-6
(or hIL-10) is able to counteract the rapamycin-induced
growth arrest in PEL (Sin and others 2007). In other tissue
culture models, IL-6 may not be required for the KSHV
lifecycle, as a KSHV isolate devoid of vIL-6 showed no

FIG. 1. Mimicry by viral interleukins. (A) KSHV-encoded
vIL-6 activates IL-6R on infected B cells mostly from within
the cell (intracrine stimulation). (B) In case of EBV, which
encodes no IL-6 homolog, the human IL-6 is induced and
required for B-cell proliferation (autocrine and paracrine
stimulation). (C) KSHV induces IL-10 as an autocrine effector
of infected B cells and perhaps to modulate T-cell responses.
(D) EBV encodes its own vIL-10, but with specific defects
compared with its host counterpart. KSHV, Kaposi sarcoma-
associated herpesvirus; EBV, Epstein-Barr virus; IL, inter-
leukin; vIL, viral IL; IL-6R, IL-6 receptor.
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significant difference in establishment, maintenance, and
reactivation from latency in transformed B cells (Chen and
Lagunoff 2007).

We speculate that vIL-6 (and the induction of hIL6) con-
tributes to the initial steps in B-cell transformation toward
the hyperplastic KSHV-associated B-cell disease, MCD,
and the neoplastic KSHV-associated lymphoma PEL. For
MCD, the dependence on IL-6 signaling persists, whereas
some PEL eventually develop IL-6 independence. Such a
model would be akin to gammaherpesvirus Saimiri-associated
T-cell transformation. Here, transformed T-cell clones ini-
tially require IL-2 for survival, but over time evolve IL-2
independence.

A homolog of IL-6 was identified in rhesus rhadinovirus
(RRV), which is closely related to KSHV. The RRV homolog
of IL-6 (RvIL-6) shows 35.6% and 27.4% amino acid sequence
similarity to rhesus IL-6 and KSHV vIL-6, respectively. One
can expect that the RvIL-6 also adopts the 4-helix bundle
fold, although the crystal structure of RvIL-6 has not been
solved. The RvIL-6 supports B-cell growth, and antibodies
against RvIL-6 neutralize the proliferating activity of the
RvIL-6 (Kaleeba and others 1999). RvIL-6 is associated with
lymphoproliferative disorder in rhesus macaques (Orze-
chowska and others 2009). Thus, all IL-6 functions seem to be
conserved among primates and primate viruses.

CD is a B-cell lymphoproliferative disorder characterized
by lymph node hyperplasia, plasma cell infiltration between
the lymphoid follicles, and hypergammaglobulinemia. The
main symptoms include fever, anemia, weight loss, and loss
of appetite. Elevated expression of host IL-6 has been im-
plicated in disease progression (Yoshizaki and others 1989;
Leger-Ravet and others 1991; Mandler and others 1992; Hsu
and others 1993). Unicentric CD is localized to a single site,
whereas the multicentric form is characterized by lympha-
denopathic presentation and systemic symptoms in more
than 1 site of the body. The multicentric form of CD is
strongly associated with KSHV (Soulier and others 1995).
Treatment option for the unicentric form is surgical removal,
but there is no standard therapy for the multicentric form.
Consistent with the biology of IL-6 blockade of IL-6 signaling
by an anti-IL-6R antibody is effective in alleviating MCD
symptoms such as fatigue, fever, anemia, hypergammaglo-
bulinemia, and lymphadenopathy (Nishimoto and others
2000; Song and others 2010).

Conclusions

EBV and KSHV are 2 human gammaherpesviruses. They
establish long-term latency in B cells and induce hematologic
malignancies. In this review, we have discussed functions and
activities of EBV’s IL-10 homolog and KSHV’s IL-6 homolog.
These viral proteins elicit many of the same phenotypes as
their human counterparts and therefore can be thought of as
providing functionality in virally infected cell types that do
not normally express the corresponding host IL. However,
these 2 viral homologs do more than merely filling in for their
host counterparts. EBV vIL-10 has lost the immunostimulatory
properties of hIL-10. With regard to this phenotype, it repre-
sents a hypomorphic variant. How this would benefit the vi-
rus is at present unclear, but one could utilize vIL-10 in
chronic inflammation and autoimmune diseases. KSHV IL-6
can signal independent of the IL-6 high-affinity receptor gp80.
With regard to this phenotype, it represents a hypermorphic

variant and potential oncogene. Therapeutic strategies target-
ing vIL-6 using humanized anticytokine antibodies or soluble
decoy receptors could be as effective against PEL and MCD as
strategies targeting the hIL-6 (or IL-6R), were it not for the
observation that the majority of KSHV vIL-6 does not leave
the ER and thus may be more difficult to target.
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