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MicroRNAs are a class of small, non-coding RNAs that can regulate the 
transcription and translation of many target genes.  Recently, several QPCR 
assays have been developed to detect the expression of microRNAs at different 
stages of maturation.  Here, we review these assays, data analysis and quality 
control in detail.  Optimization of the limit of detection, sample size calculation 
and power analysis for these QPCR arrays will be discussed.  Finally, we 
present a case study example on qPCR arrays for the expression of pre-
microRNAs. 
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1. Introduction 

Pre-miRNA profiling using real-time QPCR was developed by Schmittgen and 
colleagues19,23,24,37,38 as well as our group.29,43  Mature miRNA profiling has been 
the purview of commercial developers, most notably Applied Biosystems Inc. 
(ABI). ABI commercialized the TaqMan™ real-time QPCR assay for mRNAs 
and miRNAs. They developed the first real-time QPCR array for human 
miRNAs, which has been used successfully in cancer profiling (see22,29) for 
examples). This assay relied on a miRNA-specific reverse transcriptase primer, 
which in its initial form necessitated a separate RT reaction for each miRNA to 
precede real-time QPCR reaction. This design was impractical for all but a few 
fully automated laboratories and extremely costly in terms of labor and supplies. 
Since then, a multiplexed reverse transcription kit has become available, which 
alleviates this problem, but introduces the many problems associated with 
multiplex PCR and RT-PCR. At present, the list price for the complete human 
miRNA real-time QPCR array is $75,000 for 150 reactions, or $500 per array, 
which mirrors the price for hybridization-based arrays. 
    Earlier we published an in depth description of general methods, laboratory 
set-up and the “wetlab” aspects of real-time QPCR arrays.30 Not much has 
changed since then and not much differs in regard to general laboratory aspects 
of pre-miRNA quantification by real-time QPCR arrays from mRNA 
quantification. The chemistry of mature miRNA detection by real-time QPCR is 
different for different commercial assays. Our publication10 may serve as a fairly 
complete case study in mRNA real-time QPCR array design and analysis.  
    At present, no commercial programs for the analysis of real-time QPCR arrays 
commercial or self-designed exist.  However, this will no doubt change. The 
analysis of real-time QPCR array data is no different than the analysis of other 
microarray data and after a few real-time QPCR pre-processing steps any 
commercial, academic clustering or class discovery program can be used. The 
purpose of this chapter is to describe the individual steps for data cleanup, 
normalization and unsupervised clustering of real-time QPCR data. 
 

2. MicroRNA maturation and the utility of pre-miRNA profiling 

MicroRNAs (miRNAs) are a novel class of mammalian genes. They regulate the 
transcription and translation of many target proteins and have been implicated in 
normal development as well as carcinogenesis. Viruses also encode miRNAs. For 
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example, in Kaposi’s sarcoma-associated herpes virus (KSHV), all known miRs 
are grouped together in the viral latency region.5,33,36 This organization is similar 
to mammalian miR gene organization where clustering has been observed for 50-
70% of miR genes.3 The maturation of miRs is the subject of active research 
(reviewed in7).  

First, a pri-miR is transcribed by RNA polymerase II. It is capped and 
polyadenylated in the nucleus.4 The pri-miR can be of any length and contain any 
number of clustered miRs. The pri-miR serves as substrate for the Drosha 
nuclease complex.46 Drosha cleavage generates pre-miRs which serve as the 
precursor of one or two mature miRs. The pre-miRs reside in the nucleus and are 
~70 nucleotides in length. The stability of the pre-miRs can vary.33,37  In KSHV, 
the pre-miRs are stable since they can be detected by Northern hybridization. 
Overall, their levels correlate with the level of the mature KSHV miRs5,33,36 (see 
reference14 for an exception).  

The pre-miRs are subsequently exported out of the nucleus with the help of 
Exportin 5 and serve as a substrate for Dicer in the cytoplasm. Mature miR levels 
can be regulated by modulating exportin-5 expression.45 In the cytoplasm, Dicer 
processes the pre-miR into the mature miR and complementary strand, each 
comprising ~22nt in length. For some miRs, both the sense and anti-sense pre-
miR strands serve as template for mature miRs. 

The miRNAs have emerged as master regulators of cell lineage differentiation 
and key modulators of cancer (reviewed in6). At present the Sanger database has 
recorded 678 human miRNAs16 each capable of targeting up to several hundred 
different mRNAs.  

Mature miRNA profiling has previously been used to stratify lineage types 
and disease progression stages. Many tumor-specific and cell lineage-specific 
signatures have been compiled21,42,44 and many others). Pre-miRNA profiling has 
also been used successfully to stratify human tumors.19,23,24 We previously 
profiled pre- and mature miRNAs for PEL29 in order to establish a PEL cancer 
signature.  QPCR has been shown to be an effective form of miRNA profiling.  
Northern blotting has limitations including low throughput and poor sensitivity.  
Alternative high throughput profiling methods, like microarrays, require high 
concentrations of target input, show poor sensitivity for rare targets, a limited 
linear range and the need for post-array validation by real-time QPCR.   

Therefore, QPCR appears to be a better method for a limited set of targets 
such as the ~650 human miRNAs, and it can be applied easily at the pre-miRNA 
level as well.  
 
 



D.P. Dittmer et al. 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1.  Outline of miRNA maturation and stage-specific real-time QPCR assays. 
 
 
 
 
 

The miRNA genes are named according to the 60-80 bp sequence of the pre-
miRNA segment.15  Each miRNA gene locus produces one pre-miRNA, which in 
turn can produce one or two mature miRNAs depending on whether both strands 
of the mature product are functionally inserted into the RISC complex. While all 
miRNA genes, and therefore all pre-miRNAs, are made of unique sequence, 
different pre-miRNAs can be processed to yield an identical mature 22 nt 
miRNA.  For instance, there are 3 different let-7a genes: let7-a-1, let-7a-2 and 
let-7a-3, each located on a different chromosome 9,13,22 and subject to different 
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regulatory controls. Pre-miRNA profiling but not mature miRNA profiling 
distinguishes these genes.  

How well do pre-miRNA levels correlate with mature miRNA levels? This 
seemingly simple question has a non-trivial answer.  

(i) We and others have shown that pre-miRNA levels correlate well with 
mature miRNA levels.19,23,29,37,38,43 However, there are well-documented 
instances, where SNPs can affect Dicer processing.11,14 These exceptions are 
informative in their own right and only simultaneous quantification of pre- and 
mature miRNA levels can identify these.  

(ii) The two assays (mature miRNA and pre-miRNA) measure two different 
events and thus provide non-redundant information. The pre-miRNA pool 
represents an intermediate step and thus responds without delay to changes in 
cellular transcription. Pre-miRNAs are co-transcriptionally processed.4,27 They 
have a short half-life, much like mRNAs, and thus provide a sensitive read-out 
for the purpose of tumor profiling. By contrast, mature miRNAs are part of the 
relatively stable RISC complex and thus provide a time-delayed read-out of the 
state of the cell.  

(iii) The two assays have different performance characteristics. Unfortunately, 
these are different for each miRNA (data not shown). Even if relative levels of 
pre- and mature miRNAs correlate, the different assay formats for pre- and 
mature miRNAs have different sensitivities, different response characteristics 
and a different lower limit of detection (much of which is dependent on the 
miRNA-specific primer sequences) and thus they have a varying ability to 
distinguish between the presence and absence of a miRNA sequence.  
 

3. Primer design for real-time QPCR pre-miRNA arrays 

Polymerase chain reaction (PCR)28 has allowed many scientific fields, including 
virology, to develop assays for the detection of their template of interest.  In 
many instances, PCR has risen as the gold standard for the detection of the 
presence of a pathogen where cell culture or serological assays were once 
considered unsurpassed.  However, post-PCR handling steps required to evaluate 
the product are a cumbersome part of PCR assays.  The ability to track the 
amplification and quality of the product without post-PCR steps was first seen 
with the description of quantitative assays using replicable hybridization 
probes.25  This technique has since become the foundation from which real-time 
quantitative PCR has been developed.17 Real-time quantitative PCR measures the 
amount of PCR product at each cycle of the reaction either by binding of a 
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fluorescent, double strand-specific dye (SYBRgreen™) or by hybridization to a 
third sequence-specific, dual-labeled fluorogenic oligonucleotide (molecular 
Beacon, TaqMan™).  Since the introduction of real-time QPCR, many 
applications have arisen using this technology. Its kinetics and chemistries are 
covered in detail by Mackay et al.26 

Primer design is one of the most important aspects in achieving a successful 
real-time QPCR assay.  It is difficult to do for 22 nt long mature pre-miRNAs, 
but possible for the 70 nt pre-miRNAs using standard programs.  There are many 
computer programs and web based applications available to assist in the design 
of primers and probes.  Of these, we rely on eprimer3 as provided by EMBOSS.  

EMBOSS (European Molecular Biology Open Software Suite)34 is a 
comprehensive collection of free open-source programs for sequence analysis. It 
represents a freely available and more robust alternative to proprietary programs 
such as PrimerExpress (Applied Biosystems Inc., CA) and others. 

Eprimer3, a program for searching PCR primers, is based on the Primer3 
program35 from the Whitehead Institute/MIT Center for Genome Research. It 
allows one to search a DNA Sequence for both PCR primers and oligonucleotide 
beacons. More than 60 parameters can be specified to adapt the program for 
various purposes. They include constraints on physico-chemical properties of the 
primers, probes and product, like TM, GC content and size; constraints on 
sequence properties, like the amount of self-complementarity and 3’-overlapping 
bases; positional constraints within the template sequence; avoidance of 
sequences specified in a mis-priming library, and many more.  Detailed examples 
for use of Eprimer3 can be found in.30 We have developed the following 
guidelines for pre-miRNA primer design:  

i. The melting temperature (Tm) of the primers should be in the range of 
59±2°C. 

ii. The maximal difference between two primers within the same primer 
pair should be less than or equal to 2°C. 

iii. Total Guanidine (G) and Cytosine (C) content within any given primer 
should be between 20-80%. 

iv. There should not be any GC clamps designed into any of the primers. 
v. Primer length should fall into the range of 9-20 nucleotides. 

vi. Hairpins with a stem length greater than or equal to 4 residues should not 
exist in the primer sequence. 

vii. Fewer than four repeated G residues should be present within a primer. 
viii. The resulting amplicon should be at least 40 nucleotides in length. 
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4. Power analysis and sample size calculation for dCT. 

The overarching goal of this chapter is to provide bioinformatics approaches and 
tools for the analysis of real-time QPCR arrays that are as comprehensive as 
needed, but not more complicated than they should be. The limit in real-time 
QPCR array analysis is biological variation. We can never expect to go beyond 
it. Even the most sophisticated algorithms cannot make up for the sample-to-
sample variation inherent to biological processes. This is captured by power 
analysis and sample size calculations.  

For instance, to determine what range of responses can be expected, we 
analyzed mRNA transcription in two Burkitt’s lymphoma (BL) cell lines (one 
being sensitive to the drug AZT, one being resistant). Based upon hierarchical 
clustering, the most changed mRNA coded for vBCL (an anti-apoptosis gene). 
We analyzed n=13 independent samples taken over a 24 hour time course and 
normalized total mRNA levels to HPRT (a “housekeeping gene”). We set the 
mean for one cell line to zero (ddCT normalization17) to obtain relative changes 
and calculated fold differences as fold = 2−ddCT (Table 1, note that increases in 
mRNA levels appears as negative ddCT). Since all EBV+ Burkitt’s lymphomas 
require the gene EBNA-1 to maintain the viral episome, EBNA-1 levels did not 
change significantly (p ≥ 0.1). This mRNA therefore functions as a true 
experimental null hypothesis. By comparison, the vBCL-2 mRNA was increased 
≥170 fold in the AZT resistant cell line compared to the AZT sensitive cell line 
(p ≤ 0.005).  
 

Table 1. Observed change in mRNA levels and sample variation levels in cell lines 

 

      AZT sensitive BL AZT resistant BL   
      ddCT (n=13) ddCT (n=13)    

genes        µ1(ddCT) SD µ2(ddCT) SD fold 95%CI  p(t-test) 

vBCL-2 0 0.55 -7.74 0.57 (173 to 266 x) ≤1x10-16 

EBNA-1 0 0.61 -0.5 0.59 (0.6 to 1.76 x) ≥0.1 
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As we expect more sampling error in primary tumor biopsies as compared to 

cell lines, we performed a similar calculation using our data on primary Kaposi 
sarcoma biopsies.9 Firstly; we examined mRNA levels for LANA/orf73 mRNA, 
which is required to maintain the tumor.  As expected, we showed that LANA 
mRNA was present in every tumor cell by in situ hybridization.8 This mRNA 
therefore functions as a true experimental null hypothesis. Secondly, we 
examined mRNA levels for the vGPCR gene, which based on our studies9 and in 
situ studies by others20 varies considerably in these tumors. The tumor samples 
were divided into two groups by unsupervised clustering and mRNA levels 
compared by t-test. As before, the CT values were normalized to a 
“housekeeping gene” to adjust for total RNA concentration and fold differences 
were calculated based on fold = 2−ddCT (Table 2).  
 
 
 

Table 2. Observed changes in mRNA levels and sample variation in biopsies 

 
       KS tightly latent KS with lytic foci   
      ddCT (n=11) ddCT (n=10)    

genes        µ1(ddCT) SD µ2(ddCT) SD fold 95%CI  p(t-test) 

vGPCR 0 3.1 -9.8 3.6 (223 to 3326 x) ≤1x105 

LANA-1 0 2.6 -1.9 3.7 (0.8 to 12 x) ≥0.1 

 
 
 
 
 

Since all KSHV+ KS require LANA to maintain the viral episome, LANA 
levels did not change significantly between groups (p≥0.1). By comparison, 
KSHV vGPCR was induced ≥ 223 fold in approximately half of all KS samples 
(p ≤ 0.005), which suggested that these tumors contained a greater fraction of 
lytically reactivating cells and will be susceptible to anti-viral drugs. As 
expected, the variation (SD) is greater in clinical biopsies compared to clonal cell 
lines since the samples represent different stages of tumor development.  
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Based on the effect size, we can calculate the sample size that is required to 
conclude a difference in mean ddCT (two-sided), type-II error of 85% accuracy 
(Figure 2). For the purpose of power analysis, we use the more stringent       
alpha ≤ 0.005 to account for multiple comparison testing rather than the 
customary alpha ≤ 0.05. Therefore, based upon our QPCR accuracy, less than 20 
biological replicates are needed to detect a 10-fold difference in mRNA levels 
between treatments. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Number of samples/replicates required to conclude a difference in mRNA levels by 
QPCR. Effect size is given in CT units on the horizontal axis and sample size on the vertical axis. 

 

5. Calculating biologically relevant mean CT for replicate measurements. 

The mean is a derivative measure of central tendency. The analysis of central 
tendency also provides measures of spread, such as the standard deviation (SD). 
For instance, in an experiment using technical triplicate measurements we 
replace the raw individual CTs for gene A with the mean CT (meanCTA±SD). 
Reporting a mean (or median) without the SD leaves out essential information 
that helps the reader assess the quality of the measurement. For real-time QPCR 
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data, the SD is reported in CT units. A large amount of vibrant literature exists 
regarding error calculations for real-time QPCR measurements.31,32,41 Not 
reporting the SD or a comparable measure in variance could mean rejection of 
the final manuscript. 

The SD does not take into account the number of replicates and is dependent 
on the absolute value of meanCTA. Hence, it is almost always advisable to report 
the standard error of the mean (S.E.M.) instead, which is calculated as S.E.M. = 
SD/SQRT (number of replicates). The 95% confidence intervals (C.I.) are even 
more informative and are easily calculated in any spreadsheet or statistical 
program. 

We sometimes use a shortcut with regard to real-time QPCR array analysis, 
which is designed to give ONE central measure of variability across all samples 
and all primers for a given data-set.  
 
  

i. Calculate the SD for each primer across all samples and replicates. 
ii. Calculate %SD as SD/median for each primer across all samples and 

replicates. 
iii. Report the five number summary of the %SD; i.e. the smallest 

observation, lower quartile (Q1), median (Q2), upper quartile (Q3), and 
largest observation. 

 
In this case, we do not report individual C.I. for each primer. One would 

expect useful biomarkers for the data set in question to be in the upper quartile 
and useful normalizing genes to be in the lower quartile.  This was previously 
introduced for conventional microarrays.39  Except cluster analysis then uses this 
information as a selection tool: only Q3 is used for subsequent cluster analysis, 
since any variation < Q3 can be considered insignificant.  Also, this analysis 
identifies outliers for manual inspection, which could result from data entry 
errors, primer failures or very differentially expressed miRNAs.  

There is an alternative philosophy with regard to real-time QPCR array 
analysis, which we use for unsupervised clustering of large data sets. We use all 
raw CT data, normalize by median of array (see below for details) and subject 
this data to Euclidian-metric based clustering and heat-map display. This 
highlights outliers of repeat measurements as well as outlier samples visually. 
This easily identifies outlier measurements for imputation, and sometimes this 
represents the most useful tool for miRNA biomarker discovery efforts. Since no 
data are filtered out, using the whole data set and nothing but the whole data set 
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most truthfully resembles the variation of the experiment. Using all the raw data 
yields to the least biased determination of false discovery rate40  for the data set. 

There are many means, which by no means are the same: (i) the arithmetic 
mean or average of all data, (ii) the median of all data and (iii) percentiled mean 
or median of a fraction, typically 95%, of the data. 

There are other means, still, but they are not relevant to real-time QCPR array 
analysis since CT data are log-transformed and thus can be averaged additively 
rather than geometrically as fractions would be.  

The mean is only meaningful for n ≥ 3 samples. Even though we can calculate 
the average of a pair (n = 2) of data points, we cannot compute the mean of 
duplicates.  Hence, technical and biological repeats should be done at least 
triplicates; better yet in quadruplicates (n = 4). Quadruplicates are convenient 
technically, because four replicates of 96 samples fit in a 384 well plate and can 
be pipetted quickly using a 96-tip pipetting head, such as a Hydra™ (Thermo 
Inc.).  The more replicates, the smaller the variation, which allows us to 
distinguish smaller differences with accuracy. As a rule of thumb, we sometimes 
use sextuples to quantify 1.5 fold differences between samples.  

The median is only meaningful for an uneven number of samples,  
mod(n/2) =  0 , since it is a ranking based measure. Nevertheless, many programs 
such as Microsoft Excel will report a median for an even number of samples. The 
value is calculated as the average of the two data points that bracket the median. 
This is acceptable for everyday use. 

The mean and median are only meaningful if the individual CT data are 
within the linear range of the assay. Hence, the linear range for each primer in the 
real-time QPCR array needs to be determined at least once. The problem 
typically is not signal saturation, because a given miRNA or pre-miRNA is too 
abundant. Rather, the difficulties arise at the limit of detection where even real-
time QPCR is no longer linear, and where the maximum cycle number maxCT 
introduces an artificial threshold.  
 

6. Real-time QPCR data analysis at the limit of detection 

All possible probabilities are distributed between 0 and 1. Most simple statistical 
analyses assume that the data follow a normal distribution. The normal 
distribution extends from minus infinity to plus infinity and is symmetrical 
around the mean.  Real-time QPCR data are not because they are bounded by the 
maximal cycle number maxCT. It used to be that any PCR signal that required 
more than 35 cycles was considered contamination. Real-time QPCR pushed the 
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limit to 40 cycles and now using automation and extra precautions, we can now 
run 50 cycles without accumulating any signal or product in the non-template 
control (NTC) reaction.  

From a theoretical perspective, all real-time QPCR reactions should be run 
until a signal is detected in the NTC reaction. Only this, rather than any arbitrary 
cut-off determines the true background. In fact, the Roche LC480 software 
allows the user to extend the number of cycles for any given run in increments of 
10. Since primer-dimer extension accounts for the majority of background signal, 
the true background determined by iterative extension of the cycle limit will be 
different for different primer pairs. This poses a variety of different problems. 

Practical real-time QPCR arrays use a single fixed maxCT for every primer in 
the array for every run. How do we incorporate this singularity into the statistical 
analysis of real-time QPCR arrays?  
 

i. We can simply ignore it and treat maxCT equivalent to any other CTA, 
with CTA < maxCT. This works surprisingly well on decent data sets. It 
has some unwelcome consequences when we attempt to calculate 
medians of multiple measurements or when we attempt to calculate 
statistical measures of significance. 

ii. We can omit all maxCT from the analysis and treat the data as not 
available (NA). This is a purists approach that will yield a statistically 
sound and congruent analysis. Depending on the data set, it may force us 
to leave out a major portion of the data and thus degrade array 
performance. 

iii. We can randomly replace maxCT with either maxCT+SD or maxCT-SD 
in the entire data set. This allows us to calculate a pseudo SD for those 
replicate measurements where all individual data points equal maxCT, 
i.e. where there is no variation at all. Then we can conduct a statistical 
analysis using standard measures. 

 
Figure 3 exemplifies this problem. We compared two primer pairs A and B 

against the same target in a checkerboard design, i.e. with alternating positive 
and water wells. We used n = 96 repeats for each condition yielding a total of 
384 QPCR reactions. We ran the QPCR for 55 cycles on a LC480 light cycler. 
Using primer A on our water control, we find that most reactions did not yield 
any signal (Figure 3, left panel). Hence, the spike in density at CT = maxCT = 
55, representing 69 of 96 repeats.  
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Theoretically, all reactions that yield CT = maxCT could represent machine 
or pipetting errors.  This is unlikely (p ≤ 2.2*10-16 by X2), since one would 
expect an equal number of such errors in the positive control, where there are 
none (0/96). This justifies counting all maxCT as CT for subsequent calculations 
rather than excluding them and assigning “NA”, not available. This argument is 
highly dependent on the number of repeats.  

Suppose we only performed 6 replicates and had obtained similar proportions 
of maxCT for water (4/6) and positive control (0/6). Here, p > 0.05 by X2 and we 
could therefore not conclude that any of the maxCT were not pipetting errors and 
we have to assign “NA”. If all water control reactions (6/6) had yielded maxCT, 
we could again use maxCT, since p ≤ 0.004. It is essential that 100% of the water 
or NTC controls yield maxCT.  

Using primer B on our water control, we find that almost half of the reactions 
did yield a signal (Figure 3, right panel).  The fraction of maxCT = 55 was 58 of 
96 repeats. Still p ≤ 2.2*10-16 by X2, since we had no reaction failures in the 
positive control reaction.  

Primer B seems more sensitive, since for the same amount of input the 
medianCT = 22.64 for the positive reaction compared to primer B with 
medianCT = 28.69. However, CTs for the water control, i.e. false positives, also 
come up as early as 34.5 cycles. Using a conservative approach, the signal to 
background ratio is medianCT − 34.5 = 11.86 or ~ 3,700 fold.  For primer A the 
ratio is medianCT − 42.7 = 14.01 or ~ 16,500 fold! Hence, even though primer A 
is less sensitive, overall it will perform better.  
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Figure 3:  Density distribution of QPCR results for two primer pairs directed against the same  
target. Density is plotted on the vertical and cycle number (CT) on the horizontal axis. N: 96 
replicates for positive (pos) or water control. 
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Another difference is conformity. Primer B had two outliers in the positive 
control with CTs of 28.21 and 32.41 respectively. This is not a problem with 96 
replicates since they represent 2/96 < 2% of the data. Using either the median or 
the 10% trimmed mean would remove these outliers. We encountered a similar 
problem comparing different commercial real-time QPCR mixes18:  here, too, the 
brighter mix was more sensitive in yielding a signal at earlier CT absolute terms. 
However, the NTC reactions also came up earlier and the variation was larger. 

In sum, pipetting accuracy, contamination control and propensity for primer 
dimer formation determine the maximal cycle number for any real-time QPCR 
array.  In most cases running real-time QPCR arrays for > 40 cycles is 
meaningless. A conservative cut-off is better, as it lowers the false positive rate. 
To statistically improve assay accuracy for low abundance miRNAs, more 
replicate arrays (~ 6) and more NTC reactions should be performed. 
 

7. CASE STUDY: Analysis of real-time QPCR arrays for pre- miRNAs. 

For real-time QPCR arrays, types of normalization can be applied. Type I 
normalization relative to a reference sample t0 yields dCT. Type I normalization 
is applied for each target/primer pair. It can also be called “normalization by 
row”, since in a traditional microarray experiments the primers/genes are 
organized in rows and the samples in columns.   

If there is no designated reference sample we can also calculate dCT based on 
the median CT for the target in question. This is analogous to median centering 
by gene as introduced by Eisen et al.12 for microarrays. Type II normalization is 
relative to the reference gene e.g. U6 RNA. This eliminates differences due to 
variation of the overall input cDNA concentration. One should always aim to set 
up and experiment and normalize the input material (e.g. number of cells or total 
RNA) such that the variation in the reference gene is ±1 x CT unit.  

During type I normalization, only CT values of a single primer pair are 
compared to each other. Hence, amplification of efficient differences between 
primer pairs do not enter the calculation.  

In contrast, type II normalization compares two different primers pairs, such 
as for miRNA A and U6, with associated, possibly different, amplification 
efficiencies kA and kU6. This is a serious problem in real-time QPCR analysis. 
However, we can ignore this problem since for array analysis, clustering is 
performed in log-space (CT values) rather than interpolated RNA levels. Hence, 
primer efficiency does not play a role as long as all primers are reasonably 
similar (1.8 < meanKeff < 2) and only a linear term is subtracted during 
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normalization, which does not impact the rank order between samples. Primer 
pairs with highly aberrant Keff should be excluded from cluster analysis and 
analyzed on an individual basis. 

Figure 4 exemplifies this result. Here, pre-miRNA was isolated as per our 
prior procedures29 and miRNA levels quantified using SYBR-based real-time 
QPCR. Data were normalized to U6 RNA as described above and clustered using 
Arrayminer™ (Optimal Design Inc., Nivelles, Belgium). We used a standard 
correlation metric, which does retain a measure of relative levels across the entire 
array.  

The miRNAs, which show predominantly blue colors (top), are not expressed 
to any appreciable level compared to miRNAs, which show predominantly red 
colors across all columns. The most informative miRNAs are those in the middle 
of the heatmap. They show a large variation (blue to red) and split the sample 
columns, neatly into two groups. 

Alternatively, one could use a Euclidian metric for clustering. However, the 
Euclidian metric exaggerates differences, to the point that only the most abundant 
miRNAs show variation in the heatmap. The Euclidian metric is not sensitive 
enough in most instances.  
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Figure 4. Two-way clustering of lymphoma samples and pre-miRNAs. 
High levels are shown in red, absent levels in blue and low, but detectable levels in white. 
The lower left corner shows pre-miRNAs associated with primary effusion lymphoma. 
The 7 rightmost samples are 2x2 mm tonsil biopsies (from our publications13, 29 and 
unpublished). 
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There is also the option of using a Pearson correlation coefficient based 

clustering, which in Arrayminer is coupled to ±1 normalization, i.e. the dCT for 
each primer pair are adjusted further such that the range is within ±1 of the 
median for that particular primer pair. Here, the median for each primer pair is 
artificially set to 0. Information of both the relative abundance of miRNAs to 
each other, as well as of the magnitude of the relative change is lost. This method 
makes for pretty pictures, but loses information that is essential to assess 
biological significance.  

For instance, a more highly expressed miRNA is easier to detect, more likely 
to be within the middle of the linear range than on the fringes and is thus a better 
biomarker. In Pearson correlation coefficient or rank-based clustering, it is 
impossible to discern such a “good” biomarker, from a miRNA, which is only 
marginally present at all or from one, which shows only marginal variation. As 
demonstrated above, targets that show marginal variation, regardless of 
abundance, require many more samples to reach statistical significance. 

In sum, real-time QPCR is ideally suited for miRNA and pre-miRNA 
profiling, since the total number of human miRNAs is around ~ 700 or two 384 
well QPCR plates. In order to use real-time QPCR arrays for profiling, 
automation is a must, since the degree of replicate variability and the total 
number of replicates per sample correlate with the degree of statistical 
significance that can be attributed to a change in miRNA levels (CT). Real-time 
QPCR array data can be analyzed by the same statistical and bioinformatics 
methods as hybridization-based microarray data. There is an added benefit, 
though. If all primer pairs within the array perform with similar efficiency, 
relative fold changes of any one miRNA between samples and amongst different 
miRNAs across samples can be calculated as 1.8ddCT.  
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8. Appendix: Primer pair verification with BLAST and EMBOSS 

a. WEB-based NCBI BLAST 

Many real-time QPCR primers are published by others or available from 
collections. These should be used whenever possible, since it allows for easy 
comparison between new and existing studies. However, they should be 
thoroughly verified by bioinformatics. Here, we will discuss some scripts for 
verifying existing primers through bioinformatics approaches. 

First, all primers should be loaded into an Excel spreadsheet in a uniform 
format such as exemplified below. There are a number of nomenclature issues to 
consider. All primer sequences are 5’ to 3’ direction. All primer sequences 
should be in lower space. If necessary, use the Excel function LOWER () to 
convert each entry. The table should be in a fixed space font such as Monaco or 
Courier. This will enable visual alignment. Forward and reverse primers should 
be indicated by a common denominator such as “f” and “r”. The names should 
contain no blanks (use underscore “_” if necessary and no special, non-ASCII 
characters. If known, a Genbank ID to the target sequence should be provided as 
well as a description, but this is optional as the target can be identified by blast 
search. 
 
 
 

Table 3   Primer table in EXCEL 

description genbankID name forward primer name Reverse primer 

alpha-1-
antitrypsin nm_000295 000295f tttagaggccatacccatgtc 000295r ccacttttcccatgaagagg 

angiotensinogen nm_000029 000029f ttgagcaatgaccgcatc 000029r ttgttaagctgttgggtagactc 

apolipoprotein 
C-III (APOC3) nm_000040 000040f cagttccctgaaagactactgg 000040r acggctgaagttggtctga 

 
 
 

To confirm primer identity manually, use NCBI blast at 
http://www.ncbi.nlm.nih.gov/BLAST/. This program provides many options, but 
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the easiest is to use the default blast program against the database “nr”. nr 
contains all sequences in Genbank including mouse, human, animals,         
bacteria and viruses. Specifically, nr combines All GenBank+RefSeq 
Nucleotides+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or phase 0, 
1 or 2 HTGS sequences). As of 2007 it is no longer "non-redundant".  

It is important to first concatemerize the forward and reverse primer        
using the Excel function CONCATENATE ().  

This yields cagttccctgaaagactactggacggctgaagttggtctga for entry one. Then 
paste into the blast web interface and hit BLAST. BLAST will automatically 
adjust its parameters to optimize your search. See1,2 for an in depth discussion. 
Unfortunately, BLAST will give many, many alignments. These can be cropped 
and formatted using parameters but most times the best alignment is listed first as 
in our example. Shown in Appendix Figure 1 is an example BLAST output. The 
right alignment will show 100% identity and 0% gaps for each primer. It will 
show both primers aligned to the same genbank entry, which in our example is:  
ref|NM_000040.1|  

This entry points to a reference gene, which rather than any other entry should 
be reported. Right below the sequence identifier is the length of the 
corresponding genbank entry. Subtracting the start of the first primer, here 247, 
from the start of the second primer, here 336, gives the length of the amplicon, 89 
base pairs in our example.  Importantly, the first primer should align in 
orientation Plus/Plus and the second primer in orientation Plus/Minus or vice 
versa. If both primers align in the same orientation, they will not yield a PCR 
product.  

In case of RT-PCR, the Plus/Minus primer can be used for specific priming of 
the RT reaction, since genbank records the sense strand for reference mRNAs. 
This may not be true for viral sequences or DNA targets.  

If more than a handful of primer sequences are to be mapped onto targets, 
further automation is useful. We use the EMBOSS program. This requires the 
UNIX operating system with bash shell such as available on Linux or MacOsX 
based computers. It also requires a local installation of EMBOSS. 
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b.  EMBOSS-based FUZZNUC 

Under EMBOSS we can use the fuzznuc command for single primer match. This 
command takes an input sequence, here NC_007605.fasta and finds all 
occurrences of a pattern, here AAATGGGTGGCTAACCCCTACATAA. The 
number of mismatches can be specified as well as an output file, here outfile. 
Unlike BLAST, fuzznuc only searches a single entry in a single strand direction. 
Hence, fasta-formatted files can be used directly. Note, however, that the 
complement option in fuzznuc searches the complement, not the reverse 
complement strand.  

To apply fuzznuc to the reverse complement strand, the EMBOSS command 
revseq must be run first. 
 
Terminal 1 (operator input in bold): 
 
BigMac-2:~/orf50Emboss dirk$ fuzznuc NC_007605.fasta -pattern 
AAATGGGTGGCTAACCCCTACATAA -pmismatch 4 outfile 
Nucleic acid pattern search 
 
BigMac-2:~/orf50Emboss dirk$ fuzznuc NC_007605.fasta -pattern 
AAATGGGTGGCTAACCCCTACATAA -pmismatch 4 pan.txt -complement 
Nucleic acid pattern search 
 

c.  EMBOSS-based BL2SEQ 

Under EMBOSS, we can use the bl2seq command for single primer match. This 
program has several parameters: -p blastn is the name of the program to be used, 
here blastn; -i specifies the first sequence in fasta format; -j specifies the second 
sequence in fasta format; -o denotes the output sequence and –D the output 
format. Terminal 2 exemplifies bl2seq using the primer orf57f1 as input, 
NC_009333kshvF.fasta as target sequence and test1 as output.   

By feeding the output into grep with an arbitrary cutoff as defined by the 
pattern “e-” gives only the perfect match.   
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Terminal 2 (operator input in bold): 
 
BigMac-2:~/KSHVprimers dirk$  bl2seq -p blastn -D 1 -i orf57f1 -j 
NC_009333kshvF.fasta -o test1 
 
 
BigMac-2:~/KSHVprimers dirk$ cat test1 
# BLASTN 2.2.15 [Oct-15-2006] 
# Query: orf57f1 
# Fields: Query id, Subject id, % identity, alignment length, mismatches, gap 
openings, q. start, q. end, s. start, s. end, e-value, bit score 
orf57f1         gi|139472801|ref|NC_009333.1|   100.00  23      0       0       1       23      
82191   82213   2e-08   46.1 
orf57f1         gi|139472801|ref|NC_009333.1|   100.00  11      0       0       12      22      
21755   21745   0.35    22.3 
orf57f1         gi|139472801|ref|NC_009333.1|   100.00  11      0       0       8       18      
95339   95349   0.35    22.3 
 
BigMac-2:~/KSHVprimers dirk$  bl2seq -p blastn -D 1 -i orf57f1 -j 
NC_009333kshvF.fasta | grep -i e- 
# Fields: Query id, Subject id, % identity, alignment length, mismatches, gap 
openings, q. start, q. end, s. start, s. end, e-value, bit score 
orf57f1         gi|139472801|ref|NC_009333.1|   100.00  23      0       0       1       23      
82191   82213   2e-08   46.1 
 
 

d. SHELL-based manipulation of a real-time QPCR primer list 

To ready an arbitrary long list of primers such as an entire 96 well plate for 
analysis first, using CONCATENATE() again, add “prim” in front of each 
primer without any spaces. Convert all Excel entries to a 2-column tab delineated 
text file. The file should be saved as primers.text and should look like indicated 
below. Since UNIX file designations are case sensitive, but those of other 
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operating systems are not necessarily, it pays to only use lowercase letters for 
filenames. Again, there should be no spaces or special characters in the file name.  
Using a free text editor such as Textwrangler, open the file and remove all 
characters that don’t pertain to the primers (from http://www.barebones.com/ 
products/textwrangler/index.shtml).  

Next, use the program to replace all the tabs with a single white space. After 
visual inspection, save the file again using the option “UNIX line breaks”. 
 
Terminal 3: The file: primers.txt 
 

prim000295r ccacttttcccatgaagagg 
prim000029r ttgttaagctgttgggtagactc 
prim000040r acggctgaagttggtctga 
prim000295f tttagaggccatacccatgtc 
prim000029f ttgagcaatgaccgcatc 
prim000040f cagttccctgaaagactactgg 

 
 
 

Now we can UNIX and EMBOSS utilities to convert each primer to a fasta 
formatted file. First, we use sed to introduce the “>” character as shown in 
terminal 1. Our Excel text file here is called primers.txt and our output file 
400array. You should visually inspect the output file, since sed will also put “>” 
in front of prim if a primer name contains prim somewhere in the middle. 
 
Terminal 4 (operator input in bold): 
 
BigMac-2:~/KSHVprimers dirk$  sed -n 's/prim/>prim/p' primers.txt >400array 
BigMac-2:~/KSHVprimers dirk$  less 400array 
BigMac-2:~/KSHVprimers dirk$  head -n 2 400array 
>prim000295r ccacttttcccatgaagagg 
>prim000029r ttgttaagctgttgggtagactc 
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Next we introduce line breaks using a little script called awkscript.sh (or you 

can type awk '$2 {$1 “\n” print $2}' 400array > array2 at the command line) 
as shown in Terminal 5. 
 
Terminal 5 (The script awkscript.sh): 
 
#!/bin/awk -f 
# this part names the script 
# Don't forget to use: chmod 755 awkscript.sh to make this file executable. 
# You start the script with: ./awkscript.sh 
{print $1 "\n" $2} 
 

Once saved, we proceed as shown in Terminal 6: 
 
Terminal 6 (operator input in bold): 
 
BigMac-2:~/KSHVprimers dirk$ awk -f ./awkscript.sh 400array > 400array2 
BigMac-2:~/KSHVprimers dirk$ head -n 2 400array2 
>prim000295r 
ccacttttcccatgaagagg  
>prim000029r  
ttgttaagctgttgggtagactc 
 

The output file 400array2 is now in fasta format and can be used in any 
sequence analysis program, commercial or home-made. It can also be uploaded 
to web-based NCBI BLAST.   
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>ref|NM_000040.1|  Homo sapiens apolipoprotein C-III (APOC3), mRNA 
Length=533 
Sort alignments for this subject sequence by: 
E value  Score  Percent identity 
Query start position  Subject start position 
 Score = 46.1 bits (23),  Expect = 0.002 
 Identities = 23/23 (100%), Gaps = 0/23 (0%) 
 Strand=Plus/Plus 
 
Query  1    CAGTTCCCTGAAAGACTACTGGA  23 
            ||||||||||||||||||||||| 
Sbjct 247  CAGTTCCCTGAAAGACTACTGGA  269 
 
 Score = 38.2 bits (19),  Expect = 0.43 
 Identities = 19/19 (100%), Gaps = 0/19 (0%) 
 Strand=Plus/Minus 
 
Query  23   ACGGCTGAAGTTGGTCTGA  41 
            ||||||||||||||||||| 
Sbjct  336  ACGGCTGAAGTTGGTCTGA  318 

 
    
 
    Appendix Figure 1. Example of BLAST output 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=4557322&dopt=GenBank
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DISPLAY_SORT=0&EXPECT=1000&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Nucleotides&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=3FP48543014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=1&WORD_SIZE=7&WWW_BLAST_TYPE_URL=&HSP_SORT=1#4557322
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DISPLAY_SORT=0&EXPECT=1000&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Nucleotides&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=3FP48543014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=1&WORD_SIZE=7&WWW_BLAST_TYPE_URL=&HSP_SORT=3#4557322
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DISPLAY_SORT=0&EXPECT=1000&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Nucleotides&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=3FP48543014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=1&WORD_SIZE=7&WWW_BLAST_TYPE_URL=&HSP_SORT=2#4557322
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&DISPLAY_SORT=0&EXPECT=1000&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Nucleotides&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=3FP48543014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=1&WORD_SIZE=7&WWW_BLAST_TYPE_URL=&HSP_SORT=4#4557322
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