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Chapter 20

KSHV Latent Genes and Their Regulation

Dirk P. Dittmer

‘‘Herpesviridae omnia divisa est in partes tres.’’

Herpesviridae are divided into three groups: alpha herpesviruses, beta herpes-

viruses and gamma herpesviruses. Only the two gamma herpesviruses, Kaposi

sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8) and

Epstein–Barr virus (EBV, or human herpesvirus 4) are associated with human

cancer. Herpesvirus lytic replication is also customarily divided into three

phases: alpha or immediate early (IE), beta or early (E) and gamma or late

(L). We base this classification on the temporal order of viral gene expression.

Here, I propose that KSHV latent genes likewise may be divided into three

categories based upon their pattern of transcription in KSHV-associated dis-

eases (Table 20.1).
KSHV is associated with three proliferative malignancies in immune-

compromised patients: Kaposi sarcoma (KS), primary effusion lymphoma

(PEL) and the plasmablastic variant of multicentric Castleman disease (MCD)

(reviewed in (Antman and Chang 2000; Ablashi et al. 2002; Dourmishev et al.

2003)). Overwhelming epidemiological evidence shows that KSHV infection is

required for the disease phenotypes. Every tumor cell carries the viral genome

and expresses KSHV latent proteins. Every cell that stably maintains the KSHV

genome must express the latency-associated nuclear antigen (LANA), as this

protein is required for latent episome maintenance (see Chapter 19). LANA is

expressed in KS as well as in PEL and MCD (Kedes et al. 1997a; Kellam et al.

1997a; Dittmer et al. 1998; Dupin et al. 1999a). LANA transcription is regulated

by the LANA promoter, which is constitutively active in all cell types. LANA-2/

vIRF-3/K10.2 is only expressed in PEL, a tumor of B cell origin. By contrast K9/

vIRF-1 is seen more prominently in KS, a tumor of endothelial origin. Another

KSHV latent gene Kaposin/k12/t0.7 is also constitutively transcribed in all
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KSHV-associated tumors. K9/vIRF-1 and Kaposin are greatly induced by phor-

bol ester (TPA) stimulation of PEL. The transcriptional response to TPA of
LANA/orf73, vCYC/orf72 and vFLIP/orf71/K13, which are derived from dif-

ferentially spliced, overlapping transcripts, is complex and LANA-2/vIRF-3/

K10.5-10.6/K10.7 mRNA levels are impervious to TPA.
In sum, KSHV latent transcription seems divinely designed, or rather evo-

lutionarily tuned, to respond to different host environments. This ensures

commensal coexistence of virus and host under normal circumstances, but

can lead to tumorigenesis in the setting of immune deficiency.

20.1 Profiling KSHV Transcription in Experimental Models

and Primary Tumors

Herpesvirus transcription is divided into four stages: the three lytic stages
(alpha, beta and gamma) and the latent stage. In KSHV, and in the related

EBV, latency can be further divided into additional types, based on gene

expression and host cell origin. Many excellent studies have profiled KSHV
transcription genome-wide (Table 20.2). Although the KSHV transcript map is

of yet incomplete (see Chapter 19 for the current transcript map), all gene

expression profiling studies concur as to the identity of the KSHV latent
genes (Fig. 20.1). These are LANA (orf73), vCYC (orf72), vFLIP (orf71), the

viral miR cluster, Kaposin (orf K12) and LANA-2/vIRF-3. Except for LANA-

2/vIRF-3, all other latent genes are clustered in the far right region of the viral
genome. Except for LANA-2/vIRF-3, which is B-cell specific, all other latent

genes are expressed in all KSHV-associated cancers and all experimental mod-

els of KSHV latency.
The kinetics of KSHV latent transcripts outside of long-term latency forms a

focus of recent research. Chandran and colleagues found that LANA is

expressed as an early gene upon primary infection of a HUVEC and BJAB

cells and that there exists a reciprocal relationship between IE transactivator
Rta/orf50 message and LANA message (Krishnan et al. 2004). Rta/orf50

mRNA peaks within minutes of infection, but then declines as LANA mRNA

increases. The relative ratios depend on the host propensity to establish latent
or lytic infection. In cells that support high-level KSHV lytic replication

(HUVEC, HEK293), Rta/orf50 levels stay high as a significant proportion of
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Table 20.1 The three categories of KSHV latency

KS (in situ) PEL, MCD (in situ) TPA inducible Genes

Type I 100% 100% Minimal LANA*, vFLIP*, vCYC*

Type II 0% 100% Not inducible LANA-2/vIRF-3

Type III 100% 100% Maximal Kaposin*, K9/vIRF-1*

*A second, proximal promoter drives transcription in response to Rta/orf50.
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the culture enter complete lytic replication as characterized by subsequent E and
L gene transcription. In cells that do not support KSHV lytic replication in the
absence of external stimuli such as phorbol ester (BJAB, fibroblasts), Rta/orf50
levels rapidly decline as infected cells enter latency or loose the viral genome.

At times profiling studies also showed an increase of latent (LANA, vCYC,
vFLIP) mRNA at late times after lytic reactivation (Jenner et al. 2001a), which
would classify LANA as a gamma2 class mRNA (Fig. 20.1). A similar observa-
tion has recently beenmade in EBV (Yuan et al. 2006).We did not find evidence
for significant latent mRNA induction at late times in BCBL-1 cells (Fakhari
and Dittmer 2002); significant in as much, as it could not be explained by
genome copy number amplification or changes in PEL culture composition.
Unlike EBV-infected BL cell lines, in which the majority of cells reactivate from
latency upon IgM cross-linking, in any PEL cell line never more than 50%
(often less than 20%) of cells reactivate the virus in response to phorbol ester.
This poses no problem for the study of lytic transcription, as lytic transcripts are
virtually undetectable in latent cells and only cells that do reactivate contribute
to the signal. However, it makes studies of latent gene transcription in response
to stimuli difficult to interpret, since these are conducted in a background of
uninduced cells.
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Table 20.2 Genome-wide profiling studies for KSHV viral gene transcription

Tissue Platform Citation

PEL

BCBL-1 Reverse Northern Blot (Zhong et al. 1996)

BCBL-1 70-mer array (Wang et al. 2002)

BCBL-1 real-time QPCR (Fakhari and Dittmer 2002)

BCBL-1 cDNA array (Paulose-Murphy et al. 2001a)

BCBL-1/rapamycin real-time QPCR (Sin et al. 2007)

BCBL-1/cidofovir cDNA array (Lu et al. 2004)

BCBL-1/ganciclovir real-time QPCR (Staudt et al. 2004)

BC-1 Northern Blot (Sarid et al. 1998)

BC-1 Real-time QPCR (Whitby et al. 2007)

BC-3 cDNA array (Jenner et al. 2001a)

JSC-1 real-time QPCR Bagni et al. (submitted)

JSC-1 cDNA array (Suscovich et al. 2004)

BCBL-1/K1 cDNA array (Lee et al. 2002)

BCBL-1/Rta/orf50 cDNA array (Nakamura et al. 2003)

BCBL-1/NotchIC Real-time QPCR (Chang et al. 2005)

Endothelial

TIVE Real-time QPCR (An et al. 2006)

KS Real-time QPCR (Dittmer 2003)

Murine endothelial cells Real-time QPCR (Mutlu et al. 2007)

HMVEC-d cDNA array (Krishnan et al. 2004)

HMVEC-d cDNA array (Moses et al. 1999)

HUVEC Real-time QPCR (Yoo et al. 2005)
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20.2 The KSHV Latency Locus

The KSHV latent genes LANA, vCYC and vFLIP (and miRs) all cluster
together within one transcription unit (Fig. 20.2). At least one nascent tran-
script exists that traverses the entire locus (Pearce et al. 2005; Samols et al. 2005;
Cai and Cullen 2006). It initiates at the constitutive LANA promoter start site
at nt 127,880 and terminates at the Kaposin-distal poly-A site at nt 117,432.
Transcription across this locus proceeds only in one direction: from right to left.
To date no evidence for mRNAs originating at the opposite strand has been
found. Furthermore, latent transcription was polymerase-II dependent.
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latent ie/early late

Fig. 20.1 Transcription profile of the KSHV latency locus (See Color Insert)
*Primary data from (Jenner et al. 2001a) were re-analyzed using ArrayMinerTM

(A)

Fig. 20.2 (continued)
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(B)

Fig. 20.2 The KSHV latency locus (A) KSHV genome to scale. Upper half, rightward orfs;
lower half, leftward orfs, (B) Transcript architecture of the major latency locus of KSHV

(modified from Cai and Cullen (2006)). The relative genomic position of KSHV open reading
frames (ORFs) are shown along the top line as filled arrows to denote ORF directionality
(Kaposin/K12; ORF71/v-FLIP; ORF72/v-cyclin; ORF73/LANA; K14/v-Ox2). The KSHV
microRNAs (miR) are denoted as white boxes and are designated with the K-prefix (miR-
K1-11). Transcripts expressed during latency in the absence of viral transactivators are
denoted with white arrowheads; these originate at either the predominant LANAp-c or the
weak v-Cycp. Transcripts dependent on the KSHV lytic-switch transactivator, Rta/ORF50,
are denoted with black arrowheads and are shown below the dotted line for clarity. Lytic
transcripts originate at either the LANAp-i or the Kaposinp. Genomic coordinates of tran-
script start sites and splice donors/acceptors are shown below the transcript diagram accord-
ing to Russo et al. (1996a, b)
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We are very confident in our assignment of the type I and type II latent genes,
which show a dramatically different transcription profile that any of the other
KSHV mRNAs regardless of experimental platform, PEL line or study
(Fig. 20.1), and for which we have independent verification by in situ analysis
(Dittmer et al. 1998; Dupin et al. 1999a; Katano et al. 1999, 2000; Parravicini
et al. 2000; Rivas et al. 2001a). However, the PEL experimental system is far
from perfect. At any given time 2–5% of PEL cells reactivate KSHV, such that
highly expressed lytic mRNAs are detectable in uninduced cultures. The best
example is early nut-1 RNA, which can be detected byNorthern blot analysis of
induced PEL (Zhong et al. 1996), since the few cells that express nut-1 make
large amounts of RNA.Kaposin lytic transcripts, which originate from the gene
proximal lytic promoter, likewise can be detected in latent PEL (Sadler et al.
1999), as can be those for K9/vIRF-1 (Chen et al. 2000). Yet, different latent
mRNAs have been identified for K9/vIRF-1 andKaposin, which map to amore
distal constitutive start site. In addition, the latent genes respond to changes in
the host cell. The spliced vCYCmRNAmay be subjected to cell cycle regulation
(Sarid et al. 1999a), or the cell cycle stage may influence the rate of spontaneous
lytic reactivation (McAllister et al. 2005) thus changing the vCYC transcription
pattern. In MCD, the vIL-6/K2 protein is expressed in a large percentage of
cells, far more than any structural lytic protein (Staskus et al. 1999; Deng et al.
2002), suggesting that the vIL-6/K2 promoter can respond to MCD-specific
transcription factors irrespective of the status of all other KSHV genes
(Chatterjee et al. 2002).

Understanding KSHV transcription is a work in progress that requires
careful molecular characterization of the viral regulatory elements. As we are
starting to map the virus–host interactions at the transcriptional level, we gain
fascinating insights into the pathogenesis of KSHV, which ultimately will lead
to novel intervention targets.

20.2.1 LANA, vCYC, vFLIP

20.2.1.1 Latency-Associated Nuclear Antigen (LANA)

During latency, all KSHV-infected cells express the viral latency-associated
nuclear antigen (LANA/ORF73) (Dittmer et al.AQ1 ; Dupin et al. 1999b). LANA
is the predominant target of anti-KSHV antibodies in infected individuals.
LANA is necessary and sufficient for latent viral episome persistence (Ballestas
et al. 1999; Cotter and Robertson 1999; Hu et al.AQ2 ; Ye et al. 2004). Although
LANA shows no homology at the DNA sequence level, its function and
structural features are reminiscent of the Epstein–Barr virus EBNA-1 and
EBNA-2 proteins. LANA contains a central region of acidic repeats, a leucine
zipper, an N-terminal proline-rich domain and two nuclear localization
sequences – one located at each termini of the polypeptide (diagrammed in
Fig. 20.4). The acidic repeat regions and leucine zipper (EEDD, DE[E,Q]QQ
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and LEEQEQEL between amino acids (aa) 338. . .840) and (LEEQEQEL at aa
840) are highly immunogenic and the target for the widely used commercial
anti-LANA monoclonal antibody LN53 (Kellam et al. 1999).

The first function of LANA is to tether the viral episome to cellular chro-
matin and thus facilitate proper inheritance during cell division. The details of
how LANAmaintains the latent viral episome have been carefully studied. The
C-terminus of LANA binds directly to two adjacent 16-bp motifs within the
KSHV terminal repeats (TR), termed the LANAbinding sites 1 and 2 (LBS1
and LBS2). Both LBS share the conservation of 13 nucleotides, though nucleo-
tides flanking this 13 nt. core are different between the two (Garber et al. 2001,
2002). LANA binds with higher affinity to LBS1 than to LBS2, suggesting the
nucleotide sequence flanking the conserved 13 bp. LBS motif influences the
binding affinity of LANA. This hypothesis has been directly investigated: Kaye
and colleagues have found that nucleotides within and surrounding the LBS1
do affect LANA’s-binding affinity for that site (Srinivasan et al. 2004).

LANA has been shown to bind cellular chromatin and mitotic chromo-
somes through its N-terminus (Shinohara et al. 2002). In this manner, LANA
tethers the KSHV episome to cellular chromatin and chromosomes – thereby
ensuring proper segregation of the viral genome during host cell division
(Kedes et al. 1997b; Kellam et al. 1997b; Rainbow et al. 1997; Ballestas et al.
1999; Cotter and Robertson 1999; Szekely et al. 1999) (Kelley-Clarke et al.
2007a). Experimental abrogation of LANA expression through siRNA or
genomic knockout leads to loss of KSHV episomes from latently infected
cells, genetically demonstrating that LANA is necessary for maintenance of
latency (Ye et al. 2004; Godfrey et al. 2005). Barbera et al. (2006) demon-
strated that the N-terminus of LANA docks onto cellular chromosomes by
directly binding to the folded regions of histones H2A and H2B to mediate
nucleosome attachment (Barbera et al. 2006). Both histones H2A and H2B
were necessary for LANA to bind nucleosomes. In contrast, Robertson and
colleagues have found that LANA binds histone H1 (Barbera et al. 2006) as
well as a host of other proteins involved in DNA structure remodeling (Verma
et al. 2006a). Cellular replication and replication-licensing factors can also
bind to LANA (Stedman et al. 2004; Lu et al. 2006; Verma et al. 2006b),
suggesting that the KSHV episome– host chromatin interaction is not static
but responds to viral latent replication (via the latent ori in the KSHV TRs) as
well as host replication.

Second to facilitating episomal attachment, LANA can mediate transcrip-
tional suppression. In the presence of LANA, LBS1 and LBS2 repress tran-
scription of an artificial minimal promoter when placed upstream (Garber et al.
2001, 2002). The ability of LANA to carry out these functions is directly
proportional to LANA’s-binding affinity for these two sites. In the context of
the viral genome, LANA can repress transcription of the K1 promoter via the
LBS1 and LBS2 of the TRs (Verma et al.AQ3 ).

Other than by direct DNA binding, the transcriptional repressor function of
LANA can also be mediated by cellular methyl transferases (Shamay et al.
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2006). Currently there exists no evidence that this mechanism is used to mod-
ulate viral transcription. More likely, DNA-independent transcriptional silen-
cing provides one avenue by which LANA reprograms the latently infected host
cell. Ectopic expression of LANA leads to both up- and down-modulation over
147 cellular genes (Renne et al. 2001; An et al.) and this global reprogramming
may provide one mechanism that mediates LANA’s in vivo transforming
function (Fakhari et al. 2006).

Third, LANA positively modulates the transcriptional activity of its own
promoter (JeongAQ4 et al.; Renne et al. 2001; Jeong et al.). Although the LANA
promoter (LANAp) is constitutively active in the absence of viral proteins,
expression of LANA leads to auto-activation of its own promoter to maintain
a positive-feedback loop. The C-terminus of LANA protein is required for
auto-activation of the LANAp since deletions of amino acids (aa) 1002–1062
or 1113–1162 reduced LANAp auto-activation (Jeong et al.). This comprises
the DNA-binding region of LANA (Kelley-Clarke et al. 2007b) and is also
required for binding to KSHV TR sequences LBS1 and LBS2 (Garber et al.
2001, 2002). The central repeat domains of LANA that span aa 214–750
(including a proline-rich, a DE acidic repeat, and a Q-rich domain) are
dispensable for auto-activation of the LANAp since expression of these dele-
tion mutants still transactivated the LANAp to wild-type/full-length levels
(Jeong et al.). This is not surprising since the central acidic repeat region of
LANA is highly variable among KSHV isolates and is missing entirely from
the rhesus rhadinovirus (RRV) LANA (Zhang et al. 2000; DeWire and
Damania 2005).

LANA protein binds to nt. 127,903–127,923 of the core LANAp as demon-
strated by EMSA (Jeong et al.). Sequence analysis of nt. 127,908–127,915
revealed the presence of an 8 bp motif that is centrally present with LBS1 within
the KSHV terminal repeats (TRs). In contrast to each TRwhere two 16 nt. LBS
exist in tandem, the LANA promoter contains only a single core LANA-
binding site motif upstream of the latent 127,880 start site.

A detailed investigation has reported on LANA’s transactivation of the
cellular human telomerase reverse transcriptase (hTERT) promoter through
interaction with cellular Sp1 protein (Verma et al.). Verma et al. showed that the
C-terminus of LANA is necessary and sufficient to bind Sp1 protein. LANA
was shown to bind to Sp1 via Sp1’s glutamine-rich ‘‘B’’ domain, which is one of
two (A and B) domains required for transcriptional activation (Courey et al.
1989; Verma et al.) but not DNA binding (Kardassis et al. 1999). This report
implicates synergism between LANA and Sp1 to activate transcription on the
cellular hTERT promoter. Of interest to this idea is the location of the core
LANA-binding site within the core LANAp (127,908–920), which is adjacent to
the Sp1-binding site (127,928–933) (Jeong et al. 2004). Based on these observa-
tions, it is likely that LANA and Sp1 synergize to activate LANAp transcription.

In addition to specific DNA binding, LANA can act as a promiscuous
transcription co-factor on other promoters independent of its own DNA-bind-
ing recognition element through interaction with cellular proteins including:
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Sp-1 (Verma et al.), RBP-jkappa (also known as CSL) (Lan et al. 2005a), p53
(Friborg et al. 1999), Rb (Radkov et al. 2000a, b), GSK-3beta (Fujimuro et al.
2003), CBP (Lim et al. 2000, 2001), ATF4/CREB2 (Lim et al. 2000, 2001),
Ring3 (Platt et al. 1999) (Mattsson et al. 2002) (Viejo-Borbolla et al. 2005;
Ottinger et al. 2006) and KSHV Rta/orf50 (Lan et al. 2005b). Chromatin-
modifying factors SAP30, mSin3A and CIR (Krithivas et al. 2000, 2002),
meCP2, DEK (Krithivas et al. 2000, 2002), Histone H1 (Cotter and Robertson
1999) and Histones H2A and H2B (Barbera et al. 2006) also can mediate these
effects.

Finally, LANA binds to and inhibits Rb (Radkov et al. 2000b) as well p53
function in reporter assays (Friborg et al. 1999; Wong et al. 2004). Conversely,
p53 can inhibit the LANA promoter (Jeong et al. 2001). This initially led to a
model, in which LANA behaved very much like the small DNA tumor virus
transforming proteins. In fact, because of its ability to decorate host chromo-
somes LANA can induce chromosome instability phenotypes that are akin to
p53 inactivation (Pan et al. 2004; Si and Robertson 2006). However, the situa-
tion is more complex. At least one PEL cell line (BC-3) has lost Rb protein
expression (Platt et al. 2002), which seems unnecessary if LANA efficiently
counteracted all Rb functions, but it leaves open the possibility that LANAmay
interact with and inactivate other RB family members. LANA, of course, has
multiple binding partners (�10) and functions (Si et al. 2006; Cai et al. 2006).
These include Ku70, Ku80 and PARP-1, which can also be in complexes
containing p53. Hence, it is easy to rationalize how some LANA can be
found in complex with p53. Despite being in complex with LANA, p53 is
fully functional in PEL (Petre et al. 2007) and can be activated by doxorubicin.
Moreover, the LANA-p53 complex can be destroyed by the mdm-2/p53 inter-
action inhibitor nutlin (Petre et al. 2007; Sarek et al. 2007), which leads to p53-
dependent apoptosis in PEL.

20.2.1.2 v-CYC/orf72

v-cyclin (orf72) represents another candidate KSHV oncogene because of its
homology to the human cyclin-D/Prad oncogene. In general, cyclin-D proteins
(D1, D2, D3) associate with specific cyclin-dependent kinases (CDKs) and these
complexes phosphorylate Rb family members (reviewed in Sherr (1996)). This
in turn liberates E2F/DP-1 transactivation functions that are necessary and
sufficient for S-phase entry. Importantly, the human cyclin-D1 gene is amplified
in parathyroid tumors, a subset of prostate and breast cancers as well as human
mantle cell lymphomas. It can complement ras in transforming low passage
rodent cells in culture (Hinds et al. 1994; Lovec et al. 1994) as well as c-myc in
transgenic mice (Bodrug et al. 1994). An oncogenic cyclin-D homolog is also
present in other gamma herpesviruses (reviewed in Neipel et al. (1997)). Ectopic
expression of the murine herpesvirus 68 (MHV68) cyclin in T cells causes T-cell
lymphomas in transgenic mice (van Dyk et al. 1999).
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Themechanism of transformation byKSHV v-cyclin is most likely novel and
unique, since it phosphorylates pRb but, unexpectedly, also histone H1,
p27KIP1 and bcl-2 (Chang et al. 1996; GoddenKent et al. 1997; Li et al. 1997;
Ojala et al. 2000; Laman et al. 2001). Unlike human cyclin-D, v-cyclin/cdk6-
mediated phosphorylation of Rb is resistant to inhibition by the cyclin-depen-
dent-kinase-inhibitors (CDKIs) p16INK4, p21CIP1 and p27KIP1 (Swanton et al.
1997). Moreover, v-cyclin/cdk6 induces the degradation of p27KIP1 (Ellis et al.
1999; Mann et al. 1999). Yet, the results of these transient expression studies
remain controversial: v-cyclin can overcome a p16INK4G1 arrest (Swanton et al.
1997), but its activation of the E2F-responsive cyclin A promoter is inhibited by
p16INK4(Duro et al. 1999). Depending on the cell line used, v-cyclin binds
exclusively to cdk6 (GoddenKent et al. 1997), to cdk4 and cdk6 (Li et al.
1997) or to cdk4, cdk6 and cdk2 (Mann et al. 1999).

Despite significant overall sequence identity, key residues required for cyclin
D1 nuclear export and degradation are lacking in theK-cyclin C-terminus . As a
result, K-cyclin possesses a longer half life than cyclin D1 and displays more
pronounced nuclear accumulation. In the case of human cyclin D, a mutant
allele (K112E or K114E) has been generated, which is incapable of activating
CDKs. Mutation of the homologous K-cyclin residue (K106 to E) significantly
(�50%) reduced CDK6 interaction as well as RB phosphorylation. Recent
evidence (Upton and Speck 2006) suggests that the homologous, cdk-binding
deficient mutant in the murid herpesvirus 68 (MHV-68) viral cyclin D homolog
was able to replicate in culture, but was attenuated for replication in vivo.

V-cyclin over-expression induces transient proliferation (Swanton et al. 1997), as
well as apoptosis (Ojala et al. 1999; Hardwick 2000; Ojala et al. 2000). To date, no
stable cell lines that express v-cyclin have been reported, suggesting that high-level
expression of v-cyclin is not compatible with continued cell growth. However, loss
of p53 uncovered the transforming potential of vCYC in vivo.While KSHV vCYC
single transgenic mice did not develop tumors, lymphomas developed rapidly in a
p53null background (Verschuren et al. 2002, 2004). An analogous phenotype has
been observed in at least one transgenic model for human cyclin D1, where either
deletion or targeted overexpression of wild-type cyclin D1 in photoreceptor cells
was associated with apoptosis (Fantl et al. 1995;Ma et al. 1998; Skapek et al. 2001).
Presumably, loss of p53 counteracted the pro-apoptotic signals that were associated
with forcedKSHVvCYCexpression. In contrast toKSHV, 60%of transgenicmice
expressing the MHV-68 cyclin D homolog in T cell developed lymphoma within
12 months (van Dyk et al. 1999). This suggests that cell lineage and the differentia-
tion state of the host cell and cyclin needed to be in the right balance. This data
suggest a model that requires multiple events initiated by the concerted action of all
KSHV latent proteins for KSHV-dependent lymphomagenesis.

20.2.1.3 vFLIP/orf71

v-FLIP/orf71 is transcribed from the LANA promoter and translated from an
internal ribosome entry site located within the vCYC coding region (Grundhoff
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andGanem 2001) (Low et al. 2001). The vFLIP protein has sequence homology
to equine herpesvirus-2 E8 and herpesvirus Saimiri (HVS) orf71 (Hu et al.
1997). It inhibits CD95/FAS-induced apoptosis in vitro by blocking caspase-
3, -8 and -9 (Djerbi et al. 1999). Both CD95/Fas-L and TRAIL/TNF-alpha
induce apoptosis through a similar mechanism (Muzio et al. 1996; Medema
et al. 1997). Clustering of the receptor upon binding of the ligand recruits an
adapter molecule (FADD and TRADD, respectively) with a binding domain
(DD) for the receptor and a conserved ‘‘death-effector-domain’’ (DED) that
binds and triggers the activation of caspase-8. The death signal is then trans-
duced through a number of cellular caspases resulting in the commencement of
cellular apoptosis (for review see Hu et al. 1997). A possible mechanism for viral
FLIPs postulates competition with the adapter molecule for binding to caspase
8 via its DED domain.

A more recent line of inquiry found vFLIP to be involved in NFkappaB
signaling. Here, vFLIP uses its TRAF-binding domain to activate NFkappaB
signaling (Guasparri et al. 2006). vFLIP activated IkkappaB-kinase (An et al.
2003; Field et al. 2003) and thereby increases NF-kappaB activity, which is anti-
apoptotic in PEL cell. In addition, vFLIP induced MHC-I expression through
NF-kappaB in KSHV-infected lymphatic endothelial cells (Lagos et al. 2007),
which underscores the physiological importance of the vFLIP-NF-kappaB
interaction. Moreover, vFLIP transgenic mice develop lymphoma (Chugh
et al. 2005). Eliminating either vFLIP or NF-kappaB activity from PEL induces
apoptosis (Keller et al. 2000; Guasparri et al. 2004; Godfrey et al. 2005),
demonstrating that this pathway is essential for lymphomagenesis.

20.2.2 KSHV miRNAs

Micro RNAs (miRNAs) are a novel class of mammalian genes. They regulate
the transcription and translation of many target proteins and have been
implicated in normal development as well as carcinogenesis. Viruses also
encode miRNAs. In KSHV, the miRNAs are conserved among different
isolates (Marshall et al. 2007) and grouped together in the viral latency region
(nucleotide 119305–121911) (Cai et al. 2005; Pfeffer et al. 2005; Samols et al.
2005). This organization is similar to mammalian miRNA gene organization
where clustering has been observed for 50–70% of miRNA genes (Altuvia
et al. 2005). The maturation of miRNAs is the subject of active research
(reviewed in (Cullen 2004)). First, a primary miRNA, or pri-miRNA, is
transcribed by RNA polymerase II. It is capped and polyadenylated in the
nucleus (Cai et al. 2004). The pri-miRNA can be of any length and contain any
number of clustered miRNAs. The KSHV miRNAs are derived from a com-
mon precursor molecule (Pearce et al. 2005; Cai and Cullen 2006), comparable
to the stable HSV-1 lat intron (Cui et al. 2006). They share a common
leftward-orientation and are regulated by multiple splicing events, multiple
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termination sites and multiple transcription initiation sites (at nt 127,880,
123,848, 118,758) (Dittmer et al. 1998; Sadler et al. 1999; Sarid et al. 1999a;
Talbot et al. 1999; Li et al. 2002; Marshall et al. 2007). Promoter–reporter
constructs encompassing these three latent start sites all exhibited activity
after transient transfection, but by comparison the constitutive LANA pro-
moter at nt 127,880 exhibited 20-fold higher basal activity then the vCYC
promoter (O’Hara and Dittmer, unpublished observation). This pattern of
promoter activity is consistent with a model whereby the common LANA
promoter regulates all KSHV latent RNA species, giving rise to mRNAs as
well as all miRNAs in KSHV-associated cancers.

The pri-miRNA serves as substrate for the Drosha nuclease complex (Zeng
et al. 2005). Through Drosha the precursor miRNAs, or pre-miRNAs, are
generated, each serving as the precursor of one or two mature miRNAs.
The pre-miRNAs reside in the nucleus and are �70 nucleotides in length.
The stability of the pre-miRNAs can vary (Schmittgen et al. 2004; Pfeffer et al.
2005). In KSHV, the pre-miRNAs are stable as they can be detected by
Northern hybridization. Overall their levels correlate with the level of the
mature KSHV miRNAs (Cai et al. 2005; Pfeffer et al. 2005); Samols et al.
2005) (see reference (Gottwein et al. 2006) for an exception) and can be
detected in all PEL cell lines as well as in primary KS biopsies (O’Hara and
Dittmer, submitted). The pre-miRNAs are subsequently exported out of the
nucleus with the help of Exportin 5 and serve as a substrate for Dicer in the
cytoplasm. Mature miRNA levels can be regulated by modulating exportin-5
expression (Yi et al. 2005). In the cytoplasm, Dicer processes the pre-miRNA
into the mature miRNA and complementary strand, each comprising �22 nt
in length. For some miRNAs, both the sense and the anti-sense pre-miRNA
strands serve as template for mature miRNAs. For KSHV, this has been
demonstrated for miR-K4, miR-K6 and miR-K9. The mature miRNAs are
then incorporated into the RISC complex, which carries out the enzymatic
function.

The elucidation of miRNA targets and the function that the KSHVmiRNAs
play in the viral life cycle is the subject of active research and covered in detail in
Chapter 25.

20.2.3 Kaposin/K12

Kaposin is located immediately downstream of LANA, vCYC and vFLIP and
in addition to the common promoter can be regulated by a promoter located
between LANA and cyclin (Li et al. 2002) and during lytic reactivation yet
another, orf-proximal promoter (Sadler et al. 1999). Like LANA,Kaposin too is
expressed in every tumor cell (Staskus et al. 1997). In fact,KaposinmRNA is the
most abundant mRNA in latently infected PEL. It gives rise to an interesting
group of alternatively translated proteins (Sadler et al. 1999), at least some of
which can transform NIH3T3 cells in culture (Muralidhar et al. 1998). Kaposin
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interacts with cytohesin-1 (Kliche et al. 2001). In addition, it has been shown to
stabilize cellular cytokine mRNAs through the p38 mitogen-activated protein
kinase (MAPK)/MK2 kinase pathway (McCormick and Ganem 2005; McCor-
mick and Ganem 2006). Interestingly, and perhaps because of its high expres-
sion and protein repeats, Kaposin provides target peptides for the human CD8
cytotoxic T-cell response (Brander et al. 2001); Micheletti et al. 2002).

20.3 LANA-2/vIRF-3 and K9/vIRF-1

Profiling of KSHV mRNAs in PEL revealed one new lated orf that was not
included within the LANA latency locus (Fakhari and Dittmer 2002). It
belonged to a KSHV vIRF homolog, also called LANA-2/v-IRF-3, which is
not expressed in KS, but is expressed in 100% of PEL and MCD in a pattern
similar to LANA (Lubyova and Pitha 2000; Rivas et al. 2001a). LANA-2/
vIRF-3 counteracts cellular IRFs, but also p53 function (Rivas et al. 2001a).
LANA-2/vIRF-3 is a member of several KSHV IRF homologs. Their function
in immune evasion is described in detail in elsewhere (see Chapter by J. JungAQ5 ).
The viral IRFs, just like the viral latent genes are clustered and oriented as
repeats of leftward orfs (see Table 20.3). There transcription is complex and not
fully understood. LANA2/vIrf-3 is only expressed in B lineage cells, but here in
every cell, whereas for K9/vIRF-1 has both latent and lytic transcriptional start
sites (Chen et al. 2000) have been described in PEL. More important, by cluster
analysis, K9/vIRF-1 clustered with the other latency genes in endothelial-cell
lineage KS tumors (Dittmer 2003), as if at least one vIRF has to be expressed
during viral latency.
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Table 20.3 KSHV encodes multiple viral interferon regulatory genes as clustered leftward orfs

NameAQ6 Location based on (Russo et al. 1996b)
Transcriptional
class

orf57/Mta/Sm (right) IE

polyA-termination: 83637

K9/vIRF-1 83860–85209 E

Upstream start (-84) LATENT

polyA-termination: 86006

K10 s 88085–86074 LATENT

K10: 88164–86074 LYTIC

K10-K10.1/vIR-4 88910–86076 (intron: 88443–88343) LYTIC

K10-K10.1 88910–86076 (intron: 88443–88343 intron:
89034–88799)

LATENT

K10.5-K10.6 (or 10.7)/
LANA-2/ vIRF-3

91393–89599 (intron: 90938–90847) LATENT

K11: 91964–93367 LYTIC

K11-K11.2: 94123–91964 (intron: undefined) LYTIC

K11.2/ vIRF-2 94123–93623 LYTIC
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20.4 Architecture of the KSHV Latency Locus Promoter (LANAp)

LANA transcription is regulated by the LANA promoter (LANAp), depicted
in Fig. 20.3 (Dittmer et al.; Sarid et al.; Talbot et al.). In its initial characteriza-
tions, the LANAp was found to direct transcription of poly-cistronic mRNAs
encoding either LANA/ORF73, v-cyclin/ORF72, and v-FLIP/ORF71 or only
v-cyclin/ORF72 and v-FLIP/ORF71 through alternative splicing out of
LANA/ORF73 (Dittmer et al.; Sarid et al.) (diagrammed in Fig. 20.2, top
three transcripts). Transcriptional profiling of viral gene expression showed
that during viral latency in PEL and in primary KS biopsies, LANA, v-cyclin,
v-FLIP and Kaposin were constitutively expressed (Jenner et al.; Paulose-
Murphy et al.; Fakhari and Dittmer; Dittmer). Therefore, under conditions
where other KSHV promoters were silenced, the LANA promoter remained
constitutively active. GpC islands within the LANAp are constitutively
unmethylated in both PEL and KS (Chen et al. 2001) and are associated with
an ‘‘open’’ chromatin environment. This is in contrast to, for instance, the
promoter for the KSHV lytic-switch protein Rta/ORF50. Treatment with
sodium butyrate, an inhibitor of histone deacetylases (HDACs), did not change
the acetylation status of histones H3 andH4 on the LANAp since the promoter
was already de-repressed, contrasting the response observed on the Rta/ORF50
promoter (Lu et al. 2003).

Left of the LANA/v-cyclin/v-FLIP locus is another latently expressed gene,
Kaposin/K12.WhileKaposin/K12 has its own promoter that is highly responsive
to the lytic-switch protein, Rta/ORF50. Recent work has discovered transcripts
containing Kaposin/K12 message originating from a weak promoter located in
front of v-cyclin/ORF72 (Pearce et al.; Cai and Cullen) and also originating
from the latent LANAp (Cai and Cullen). Importantly, the newly discovered
KSHVmicroRNAs (miRNAs) are located within the intergenic region between
the v-FLIP/ORF71 and the Kaposin/K12 open reading frames (Cai et al.;
Pfeffer et al.; Samols et al.). Therefore, transcripts that originate from the latent
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Fig. 20.3 Domain structure of LANA Diagram of the KSHV Latency-Associated Nuclear

Antigen, LANA (with permission from M. Staudt, 2006). The gene product of ORF73 is the
KSHV latency-associated nuclear antigen (LANA). LANA is an 1162 amino acid (aa) protein
that contains a nuclear localization sequence (NLS) at both the N- and C-termini, a proline-
rich domain (P-rich), an acidic repeat domain of aspartic and glutamic acid (DE), a glutamine-
rich domain (Q) and a leucine zipper domain (LZ). The C-terminal 231 aa facilitates binding
to genomic terminal repeat (TR) DNA and to LANA promoter DNA
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LANAp and encode the Kaposin/K12 ORF also encode the miRNAs, and as
such can explain the constitutive expression of the KSHV miRNAs during
latency (Cai and Cullen 2006) (see Fig. 20.2 for diagram of transcripts). These
novel reports demonstrate that despite its name, the LANAp can also direct
expression of every viral gene expressed during latency. An exception to this is
the latent PEL-specific LANA-2/vIRF3, which is located in a distant genomic
location outside of the LANA latency locus (Rivas et al. 2001a, b). Spatial
clustering and 50-co-terminal regulation underscores the importance of this
region and sets the latency-associated locus and the LANAp apart from all
other viral transcription regions.

The LANAp is constitutively active in the absence of viral proteins in all cell
lines tested, including KSHV-positive and -negative B cells, HEK293 epithelial
cells and SLK endothelial cells (Jeong et al.; Jeong et al.). Moreover, a 1,861 bp
DNA fragment originating at the LANAAUG at position 127,300 and extend-
ing to position 129,161 (–1299 bp relative to the latent transcription start site)
was able to direct B cell-specific reporter gene expression in transgenic mice
(Jeong et al.). This demonstrated that host cell transcription factors in the
absence of any viral transactivators suffice to direct LANAp activity and, by
inference, LANA, v-cyclin, v-FLIP, Kaposin/K12 and miRNA transcription
during viral latency.

Previous reports on LANAp deletion analyses mapped the core promoter
region from +10 to –88 (nt. 127,870–127,968) relative to the latent transcrip-
tion start site at 127,880 (Dittmer et al.; Jeong et al.). While the core promoter
mediates minimal LANAp activity, the presence of additional promoter
sequence both up- and downstream of the core promoter significantly contrib-
uted to LANAp activity (Jeong et al.). The presence of distal sequences from
–88 up to –279 (nt. 127,968–128,159) as well as sequences within the 50UTR
from +10 down to +271 (nt. 127,870–127,609) enhanced reporter activity
more than 10-fold relative to the minimal core promoter (Jeong et al.).

Although the LANAp exhibits constitutive activity in the absence of viral
proteins, expression of LANA protein leads to an increase in promoter activity
(Jeong et al.; Renne et al. 2001). Presumably central to this function, LANA has
been shown to directly bind within its own promoter to a region that contains a
small 8 bp consensus motif that is centrally located within the larger 16 bp.
LANA-binding site 1 (LBS1) of theKSHV terminal repeats (TRs) (Garber et al.
2001, 2002). Enhancement of LANAp activity by LANA protein establishes a
self-stabilizing feedback loop to maintain KSHV latency (Renne et al. 2001;
Chiou et al.; Wong et al.).

The mammalian core promoter is generally defined as the minimal stretch of
contiguous DNA sequence that is sufficient to direct accurate initiation of
transcription by the RNA polymerase II machinery. They typically encom-
passes DNA sequences between approximately +50 and –40 relative to a
transcriptional start site (Weis and Reinberg; Javahery et al. 1994; Smale
1997; Smale 2001). Several sequence motifs are commonly found in mammalian
core promoters: these include the TATA box, initiator (Inr), the TFIIB

SPB-141312 20 August 12, 2008 Time: 9:46 Proof 1

20 KSHV Latent Genes and Their Regulation

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

recognition element (BRE) and the downstream core promoter element (DPE).
Each core promoter element can be found in some but not all core promoters,
and it is a misconception that all promoters must contain each element. The
core LANAp has been defined as +10 to –88 (Jeong et al.; Jeong et al.) and it
contains the expected mammalian core promoter elements as well as an essen-
tial Sp1 site. These elements are independently required as shown by site-
directed mutagenesis (Staudt and Dittmer 2006).

Other than during asymptomatic latency in B cells (Mesri et al.; Dittmer et al.)
or in KSHV-associated tumors (Dittmer et al.; Dupin et al. 1999b), LANA
protein and LANAp originating mRNAs have also been detected immediately
after de novo infection of permissive endothelial cells and non-permissive fibro-
blasts (Krishnan et al. 2004; Yoo et al. 2005). In these experiments,KSHV rapidly
establishes latency but can be reactivated by TPA. LANA and Rta/ORF50
mRNAs were described as immediate early mRNAs upon de novo infection.
This prompted the discovery of a novel lytic-phase LANA promoter (Lan et al.
2005b; Matsumura et al. 2005, Staudt and Dittmer 2006).

The LANAp-c (127,880) is constitutively active during all forms of latency;
its activity is enhanced by LANA (Jeong et al.) and independent of Rta/ORF50.
A second, novel, downstream start site is only active in the presence of Rta/
ORF50. Nucleotides 127,607–127,675 are sufficient and required for Rta/
ORF50-responsiveness and encompass the core elements of the LANAp-i.

Interestingly, the LANAp-i was significantly more responsive to Rta/
ORF50 in isolation than when linked to the LANAp-c as in the LANA-FL
reporter. This effect could be a result of transcript elongation ensuing from the
LANAp-c through the LANA/ORF73 50 -UTR (containing the LANAp-i),
which might prevent initiation events on LANAp-i cis regions. Such a mechan-
ism was previously reported for the GAL10 and GAL7 promoters of Sacchar-
omyces cerevisiae and for transcription through tandem HIV-1 promoters
(Greger et al. 1998; Greger and Proudfoot 1998). In support of this notion,
deletions of core LANAp-c regions that decreased basal promoter activity were
associated with increased Rta/ORF50-responsiveness.

In the opposite direction of LANA and the latent transcripts is K14 and the
vGCPR (see Fig. 20.4). The vGPCR promoter is absolutely dependent on Rta/
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LANA K14

32 bp

K14p

LANAp-cLANAp-i
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Fig. 20.4 The LANA
promoter
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orf50 (Liang and Ganem 2004; Liang et al. 2002). Mutation of a shared con-
sensus RBP-j� site at 127,736–127,740 reduced the ability of Rta/ORF50 to
transactivate both the LANAp-i and the K14 promoters (Staudt and Dittmer
2006). These data suggest a mechanism whereby LANA transcripts derived
from the LANAp-i can be transcribed during lytic reactivation without poly-
merase interference by K14/vGPCR transcripts that are simultaneously being
transcribed on the complementary strand in the opposite orientation as a result
of bi-directional transactivation from the KSHV lytic-switch protein, Rta/
ORF50.

During de novo infection, Rta/ORF50 is present within KSHV virions
(Bechtel et al.; Lan et al.) and as such is delivered into the host cell upon
infection in the absence of LANA protein expression. Therefore, based on the
data reported herein we speculate that Rta/ORF50 protein could initially
transactivate the LANAp-i and K14/vGPCR promoters through direct
DNA binding or via the shared consensus RBP-j� site during de novo infec-
tion. As LANA protein expression ensues and LANA accumulates within the
cell, expression of Rta/ORF50 protein is silenced as a result of LANA repres-
sion of the Rta/ORF50 promoter and LANA’s inhibition of Rta/ORF50’s
transactivation function (Lan et al.). As a result, the LANAp-i and K14/
vGPCR promoter activity would cease and LANA-coding mRNA could be
transcribed from the latent LANAp-c, which is auto-regulated by LANA
protein. This sequence of events can establish a positive-feedback loop that
is sufficient to initiate and maintain viral latency within a permissive cellular
environment.
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