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Purpose of review

To summarize major recent findings on the biology of human

herpesvirus-8, i.e. Kaposi’s sarcoma-associated

herpesvirus, and the implications of these findings for

Kaposi’s sarcoma treatment.

Recent findings

Although reduced in incidence in developed countries

since the introduction of highly active antiretroviral therapy,

Kaposi’s sarcoma incidence is still markedly increased in

HIV-infected patients in resource-rich areas of the world

and is a major complication among HIV-infected individuals

in sub-Saharan Africa. The Akt/mammalian target of

rapamycin pathway has emerged as a major driving force in

Kaposi’s sarcoma. In addition, the roles of p53, the Kaposi’s

sarcoma-associated herpesvirus viral cyclin and nuclear

factor-kB in the development and progression of Kaposi’s

sarcoma are being further clarified, and therapeutic agents

are being developed that may target these pathogenetic

mechanisms. New Kaposi’s sarcoma treatments should be

considered that target the molecular interface between

virus and host.

Summary

The growing knowledge of Kaposi’s sarcoma biology

provides multiple opportunities for rational targeted

therapies. Further research is needed to better understand

the mechanisms by which Kaposi’s sarcoma develops and

to develop therapeutic strategies that prevent resistance to

treatment.
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Introduction
Kaposi’s sarcoma shows a gene expression profile resem-

bling that of lymphatic endothelium [1,2] and requires

infection with human herpesvirus (HHV)-8, also known

as the Kaposi’s sarcoma-associated herpesvirus (KSHV),

for its development. Kaposi’s sarcoma was among the first

opportunistic diseases reported in association with HIV

infection in the early 1980s and was one of the original

conditions considered diagnostic of AIDS. Although the

incidence of the tumor has declined markedly in devel-

oped countries since the introduction of highly active

antiretroviral therapy (HAART), the standardized inci-

dence ratio for Kaposi’s sarcoma among people with

AIDS remained more than 3600-fold higher in the

post-HAART period (1996–2002) than in the general

population in the US [3�]. Hence, Kaposi’s sarcoma

remains an important cause of morbidity among HIV-

infected individuals in the US and other developed

nations. In sub-Saharan Africa, rates of HIV and HHV-

8 coinfection are much higher than in developed

countries, as is the incidence of Kaposi’s sarcoma. Parkin

[4�] has estimated that of 66 200 Kaposi’s sarcoma cases

worldwide in 2002, 58 800 occurred in sub-Saharan Africa,

where Kaposi’s sarcoma is among the most common of all

diagnosed malignancies. Whitby et al. [5�] recently pro-

vided evidence to support the conjecture that exposure to

natural products found in the African environment might

account, at least in part, for higher HHV-8 reactivation

rates, leading to higher rates of seroprevalence, higher

viral loads and higher viral transmission rates in hyper-

endemic regions.

Here, we review recent progress in understanding the

mechanisms underlying Kaposi’s sarcoma pathogenesis

mailto:krowns@mskcc.org


Targeted therapy Dittmer and Krown 453
and the implications of these findings for the develop-

ment of therapeutic strategies that target these mechan-

isms.

Advances in understanding the molecular
underpinnings of Kaposi’s sarcoma
KSHV is necessary for Kaposi’s sarcoma development

and is capable of altering the signaling properties of

endothelial cells. KSHV-infected primary endothelial

cultures show spindle cell-like morphology and extended

proliferation capacity. KSHV encodes novel proteins as

well as viral homologs of human proteins known to be

involved in signaling and cancer; these include a cyclin

homolog viral cyclin (vCyc)/orf72, a viral interleukin-6

homolog, chemokine homologs (viral macrophage inflam-

matory protein-1/2), a viral G-protein-coupled receptor

(vGPCR), a viral CD200 homolog, a viral BCL-2, viral

interferon regulatory factors and a FLICE inhibitory

protein (vFLIP/orf71) homolog. Furthermore, viral

proteins use conserved motifs to mimic cellular proteins,

e.g. K1, which uses immunoreceptor tyrosine-based acti-

vation motifs to mimic receptor signaling.

The driving forces behind endothelial lineage tumors are

different than those for other solid tumors. Kaposi’s

sarcoma seems to rely less on mutational activation of

oncogenes or genetic inactivation of common tumor

suppressor genes, and more on epigenetic changes and

viral genes that modulate growth-stimulatory signaling

pathways, in particular the Akt/mammalian target of

rapamycin (mTOR) axis. The KSHV GPCR homolog

orf74 and the viral K15 and K1 proteins induce ligand-

independent signaling events that lead to transformation

in culture and induction of progrowth cytokines, such as

vascular endothelial growth factor (VEGF)-1 through Akt

signaling [6�,7�], and induce expression of matrix metal-

loproteinases (MMPs), enzymes involved in the destruc-

tion of basement membrane and required for tumor

invasion, metastasis and angiogenesis [2,8�].

Signaling kinases, including c-kit, the VEGF receptor

and the platelet-derived growth factor receptor are upre-

gulated, but not mutated, in Kaposi’s sarcoma. This leads

to the secretion of proangiogenic growth factors, which

are responsible for the proliferative neovasculature that

is a distinctive histologic feature of Kaposi’s sarcoma. To

date, however, attempts to target these kinases and

growth factors in clinical trials have met with mixed

results.

The Akt/mTOR signaling pathway has emerged as a

promising new target in Kaposi’s sarcoma. Akt is among

the most frequently activated kinases in human cancer. It

is negatively regulated by the PTEN (phosphatase and

tensin homolog deleted on chromosome 10) tumor

suppressor protein. Akt is an activating kinase for mTOR
(through tuberous sclerosis complex-1/2, as well as

directly). Stallone et al. [9] showed that biopsies of

Kaposi’s sarcoma tumors from renal allograft recipients

expressed high levels of VEGF, the VEGF receptor

(Flk-1/KDR), and phosphorylated Akt and p70S6 kinase,

enzymes in the signaling pathway targeted by rapamycin.

Sodhi et al. [6�] showed that cell lines expressing the

HHV-8 vGPCR and vascular tumors that developed in

vGPCR transgenic mice showed upregulated Akt/mTOR

signaling and were susceptible to inhibition by rapamy-

cin. The Dittmer laboratory has recently demonstrated

that KSHV-associated primary effusion lymphoma (PEL)

cells also were uniquely susceptible to inhibition by

rapamycin [10�] and recently repeated these observations

in a tumor model of Kaposi’s sarcoma (unpublished

observation). Inhibition of mTOR in Kaposi’s sarcoma

or PEL cells resulted in reduced protein synthesis of

interleukin-6, interleukin-10 and VEGF, among others.

The p53 tumor suppressor gene is rarely muted in

Kaposi’s sarcoma [11], suggesting that epigenetic changes

induced by viral oncogenes (LANA) or Hdm-2 over-

expression inactivate p53 to allow continued cell prolifer-

ation. Yet, when induced and activated, the fully

functional p53 can overcome these restrictions. This

may explain the success of DNA-damaging agents such

as liposomal doxorubicin in inducing Kaposi’s sarcoma

regression [12]. KSHV-associated PEL cell lines were

shown to be uniquely sensitive to Nutlin-3, an Hdm2

antagonist that activates p53 [13�]. Recently, elegant

mouse models have confirmed that reexpression of p53

in p53 null tumors also resulted in apoptosis or senes-

cence, depending on the tumor type [14,15,16��]. These

observations imply that tumors that eliminate wild-type

p53 function by deletion or epigenetic inactivation rather

than overexpression of a dominant-negative p53 mutant

will become susceptible to p53 restoration and activation.

Hence, one can hypothesize that Kaposi’s sarcoma would

be similarly responsive to p53-activating drugs.

The KSHV vCyc is a homolog of cellular cyclin D. Like

human cyclin D, vCyc overexpression can drive cell

proliferation by activating the cyclin-dependent kinases

(Cdks), Cdk4 and Cdk6. Unlike human D-type cyclins,

vCyc is resistant to the action of Cdk inhibitors, such as

p16ink4a, p21Cip1 and p27Kip [17]. As Cdks are ‘drugable’

proteins, this offers a rationale for evaluating Cdk inhibi-

tors against Kaposi’s sarcoma. Most Cdk inhibitors target

the ATP-binding site. Typically they show little selec-

tivity against individual Cdk–cyclin complexes, which

is an advantage as the vCyc–Cdk4 and vCyc–Cdk6

complexes, as expected, differ from cellular Cyc–Cdk

complexes. Cdk inhibitors such as roscovitine can inhibit

the replication of many herpesviruses [18–22], but it

is unclear how inhibition of KSHV replication affects

Kaposi’s sarcoma tumorigenesis. There is at least the
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possibility that inhibiting Cdks, which was recently

shown to be a natural, novel function of vGPCR [23�],

may lead to abortive virus replication and increased

tumorigenesis. The situation has become even more

complicated, as Cdk-independent functions of viral

cyclins have been discovered [24�]. The role of these

Cdk-independent activities in Kaposi’s sarcoma tumor-

igenesis is not known.

Nuclear factor (NF)-kB is central to the biology of

many tumors as it has significant growth promoting

and antiapoptotic functions. NF-kB signaling also has

an important role in Kaposi’s sarcoma and even more so in

KSHV-associated lymphomas. KSHV induces sustained

NF-kB signaling upon de-novo infection of endothelial

cells [25] and is required for latency of the murine KSHV

homolog, MHV-68 [26�]. In PEL cell lines, disruption of

NF-kB signaling by treatment with Bay 11-7082 or

bortezomib leads to rapid cell death in culture [27–

29]. Similar preclinical studies of NF-kB inhibitors have

not yet been performed in Kaposi’s sarcoma, as suitable

culture and animal models have only recently been

established. Nevertheless, since the inferences from

PEL are encouraging and multiple inhibitors that broadly

target NF-kB are entering clinical trials for other tumors,

similar trials of NF-kB inhibitors could be considered for

Kaposi’s sarcoma.

Clinical trials
The growing understanding of the molecular events

involved in Kaposi’s sarcoma development has provided

a basis for a number of early-phase clinical trials.

Although relatively few such trials have been completed

and published, a stronger basis for currently accruing and

future clinical trials now exists that is based both on our

understanding of Kaposi’s sarcoma pathogenesis and on

the development of agents with novel mechanisms of

action.

Several clinical trials have targeted the angiogenic milieu

associated with Kaposi’s sarcoma with mixed results.

IM862, a synthetic dipeptide that showed angiogenesis

inhibitory activity in preclinical models and promising

results in phase I and phase II clinical trials, proved

ineffective in Kaposi’s sarcoma when tested in a random-

ized, phase III, placebo-controlled trial [30]. More pro-

misingly, a pilot study of imatinib mesylate (Gleevec),

which targets c-kit and platelet-derived growth factor

receptor signaling, resulted in partial clinical and histo-

logic regression of cutaneous Kaposi’s sarcoma in five of

10 patients [31], and a confirmatory phase II study is in

progress by the AIDS Malignancy Consortium (AMC). A

recent study in chronic myelogenous leukemia cells

showed that responsiveness to imatinib was dependent

upon the presence of wild-type p53, whereas p53 inac-

tivation impeded the response [32]. This provides a
tempting parallel to the experience with imatinib in

Kaposi’s sarcoma, but it is not known whether p53

inactivation explains those cases of Kaposi’s sarcoma in

which imatinib is inactive or loses efficacy.

As noted above, various MMPs are overexpressed in

Kaposi’s sarcoma lesions [2,8�] and contribute to the

angiogenic milieu. Dezube et al. [33�] recently reported

the results of a randomized, phase II AMC trial in 80

patients with AIDS-associated Kaposi’s sarcoma of two

doses of COL-3, an orally bioavailable, chemically modi-

fied tetracycline that inhibits MMP-2 and -9, and shows

angiogenesis- and tumor-inhibitory activity in preclinical

models. The lower dose (50 mg/day) induced a higher res-

ponse rate than the higher dose (100 mg/day), 41 vs. 29%,

respectively, and was better tolerated. Although plasma

levels of MMP-2 and -9 declined overall, the decrease did

not correlate with Kaposi’s sarcoma response status.

Angiogenesis inhibitory activity has also been ascribed to

interleukin-12, a cytokine that exerts a variety of effects

of potential relevance to the treatment of malignancy.

Interleukin-12 can promote T helper 1-type T cell devel-

opment, increase cytotoxic T cell and natural killer cell

activity, and induce the production of interferon (IFN)-g,

which in turn inhibits angiogenesis via induction of

inducible protein-10 and monokine induced by IFN-g

(Mig) [34�]. A phase I/II trial of recombinant interleukin-

12 was conducted by Little et al. [34�], who treated 34

patients with AIDS-associated Kaposi’s sarcoma with

twice-weekly subcutaneous doses ranging from 100 to

625 ng/kg. The maximum tolerated dose was 500 ng/kg,

and adverse events included influenza-like symptoms,

depression, arthralgias, hemolytic anemia and transam-

inase elevations. At doses of 300 ng/kg or more, 17 of 24

patients whose response to treatment could be evaluated

showed complete (four patients) or partial (13 patients)

Kaposi’s sarcoma regression. Of interest, three patients

whose tumors eventually regressed during interleukin-12

treatment initially showed tumor progression, but were

nonetheless continued on interleukin-12. Also of interest

is the long median time to first response (18 weeks, range

6–56) and the very long time required to achieve com-

plete response, which ranged from 68 to 253 weeks.

Although elevated serum levels of interleukin-12,

IFN-g and inducible protein-10 were observed in this

study, which of the many potential mechanisms of action

of interleukin-12 was responsible for the observed tumor

regressions was not further defined.

IFN-a has long been known to be capable of inducing

tumor regression in a subset of patients with AIDS-

associated Kaposi’s sarcoma and, like interleukin-12, its

mechanisms of action are diverse, but include inhibition

of angiogenesis. Most of the published experience with

IFN-a in Kaposi’s sarcoma has been in patients treated in
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the 1980s and early 1990s who received IFN-a without

concomitant antiretroviral therapy or in combination with

single nucleoside reverse transcriptase inhibitors. In a

phase I AMC study recently reported by Krown et al.
[35�], escalating daily subcutaneous doses of recombinant

IFN-a2b were administered to successive cohorts of

patients with AIDS-associated Kaposi’s sarcoma who were

receiving concomitant treatment with protease inhibitor-

based HAART. This trial established 5� 106 IU of

recombinant IFN-a2b as the maximum tolerated dose

in combination with protease inhibitor-based HAART

and although Kaposi’s sarcoma regression was observed,

the study included only 14 patients and was not designed

to estimate the response rate at the maximum tolerated

dose nor was the mechanism of Kaposi’s sarcoma

regression investigated. A limited analysis failed to show

clearance of KSHV from plasma or peripheral blood mono-

nuclear cells, even among patients whose Kaposi’s sarcoma

regressed.

Constitutive activation of the Akt/mTOR signaling path-

way in Kaposi’s sarcoma lesions has provided a rationale

for the therapeutic application of drugs that inhibit this

pathway. In 1995, Stallone et al. [9] made the remarkable

observation that of 15 renal allograft recipients who

developed cutaneous Kaposi’s sarcoma, all showed com-

plete regression of their lesions when their immunosup-

pression was changed from a cyclosporine-based regimen

to single-agent rapamycin (sirolimus), which unlike

cyclosporine inhibits mTOR. Notably, none of the

patients rejected their allograft after the immunosuppres-

sive regimen was modified [9], thus separating the immu-

nosuppressive effects of rapamycin from its antitumor

activity. Since then similar successes in the transplant

setting have been reported by others, as well as some

failures [36��]. Several studies have also pointed to a role

for rapamycin in the prevention of cancers in renal

allograft recipients, but the extent to which this applies

specifically to Kaposi’s sarcoma is unclear [37�,38�]. The

strong evidence in support of a role for mTOR activation

in the development of Kaposi’s sarcoma and the demon-

strated potential for TOR inhibitors to cause Kaposi’s

sarcoma regression has led the AMC to initiate a clinical

trial of rapamycin in patients with AIDS-associated Kapo-

si’s sarcoma. The finding that inhibition of constitutive

mTOR activation in tumor cells can result in disruption

of feedback downregulation of receptor tyrosine kinase

signaling and lead to Akt activation [39��] suggests that

combining mTOR inhibition with inhibitors of Akt acti-

vation may ultimately prove more therapeutic. The use of

such combinations is further supported by the obser-

vation that Akt inhibitors also block KSHV K1 and

vGPCR-associated endothelial cell proliferation [2,40].

HAART has resulted in both a decreased incidence

of Kaposi’s sarcoma and to regression of established
Kaposi’s sarcoma lesions in a subset of patients, but the

mechanisms responsible for HAART-induced Kaposi’s

sarcoma regression are not well understood. There remains

controversy about the relative contributions of direct

effects of antiviral agents on tumor growth vs. more general

stimulation by HAART of immune system-mediated

mechanisms of Kaposi’s sarcoma regression and inhibition

of Tat- and cytokine-mediated stimulation of Kaposi’s

sarcoma growth. Recently published studies in other

tumor types have provided insights into potentially

relevant mechanisms by which HIV protease inhibitors

may induce Kaposi’s sarcoma regression. In a hepatocel-

lular carcinoma model, indinavir was shown to inhibit

MMP-2 proteolytic activation, inhibit angiogenesis and

induce apoptosis [41]. Nelfinavir was shown to inhibit in-

vitro growth of melanoma cells by a mechanism that

involved inhibition of Cdk2 through proteasome-depen-

dent degradation of Cdc25A phosphatase, leading to cell

cycle arrest [42]. Ritonavir was shown to inhibit breast

cancer cell line growth, at least in part by binding to and

partially inhibiting the chaperone function of heat shock

protein 90, leading to depletion of Cdk2, 4 and 6, cyclin

D1, and Akt [43�]. The role of any of these mechanisms in

inducing Kaposi’s sarcoma regression is unclear, as a retro-

spective analysis has shown that the clinical response of

Kaposi’s sarcoma to HAART was associated with effective

suppression of HIV, but was independent of whether a

protease inhibitor-based or nonnucleoside reverse tran-

scriptase inhibitor-based regimen was administered [44��].

Clinical trials to evaluate indinavir’s antitumor activity are

ongoing in both classic and AIDS-associated Kaposi’s

sarcoma [45,46].

A number of other possibilities currently exist for clinical

trials in Kaposi’s sarcoma using agents that are Food and

Drug Administration-approved for treatment of other

cancers and which are based on our current understand-

ing of Kaposi’s sarcoma pathogenesis. Several such stud-

ies are in progress or under consideration. These include

trials of the multitargeted receptor tyrosine kinase inhib-

itors, sorafenib and sunitinib; a monoclonal antibody to

VEGF, bevacizumab; the proteasome inhibitor, bortezo-

mib, which inhibits NF-kB; histone deacetylase inhibi-

tors, which can reverse herpesvirus latency and induce

apoptosis of infected cells [47�]; and Cdk inhibitors,

which in addition to inhibiting cell cycle progression,

also inhibit VEGF production [48] and replication of both

HHV-8 and HIV. HIV inhibition occurs via inhibition of

P-TEFb, which is a required cellular cofactor for the HIV

transactivator protein, Tat [49], which itself has been

shown to be a growth factor for Kaposi’s sarcoma cells

in vitro [50�].

Conclusion
Recent progress has been made in understanding the

molecular mechanisms by which KSHV can induce



456 Cancer in AIDS
Kaposi’s sarcoma lesions and in developing more

effective therapeutic strategies for Kaposi’s sarcoma.

While the results of some of these clinical trials are

promising, treatments for Kaposi’s sarcoma are not invari-

ably effective and we currently do not understand enough

about the angiogenic phenotype of Kaposi’s sarcoma

lesions to rationally select the agents that will prove most

effective. The complexity of Kaposi’s sarcoma biology

suggests that effective treatment strategies will require a

combination of agents that affect multiple pathways in

Kaposi’s sarcoma pathogenesis.
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