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“VIRUS HUNTING” USING RADIAL DISTANCE
WEIGHTED DISCRIMINATION1

BY JIE XIONG, D. P. DITTMER AND J. S. MARRON

University of North Carolina at Chapel Hill

Motivated by the challenge of using DNA-seq data to identify viruses
in human blood samples, we propose a novel classification algorithm called
“Radial Distance Weighted Discrimination” (or Radial DWD). This classi-
fier is designed for binary classification, assuming one class is surrounded by
the other class in very diverse radial directions, which is seen to be typical
for our virus detection data. This separation of the 2 classes in multiple radial
directions naturally motivates the development of Radial DWD. While classi-
cal machine learning methods such as the Support Vector Machine and linear
Distance Weighted Discrimination can sometimes give reasonable answers
for a given data set, their generalizability is severely compromised because
of the linear separating boundary. Radial DWD addresses this challenge by
using a more appropriate (in this particular case) spherical separating bound-
ary. Simulations show that for appropriate radial contexts, this gives much
better generalizability than linear methods, and also much better than conven-
tional kernel based (nonlinear) Support Vector Machines, because the latter
methods essentially use much of the information in the data for determining
the shape of the separating boundary. The effectiveness of Radial DWD is
demonstrated for real virus detection.

1. Introduction. A current major scientific challenge is the detection of
viruses in human blood samples. Cogent examples include HIV, the cause of
AIDS; poliovirus, which was considered eradicated, but has now emerged in Syria
and the Middle East; or middle east respiratory syndrome (MERS), which entered
the United States in May 2014 via a 44-year-old male who traveled from Jeddah,
South Africa, to Orlando, Florida, via London. At home he developed fever, chills
and a slight cough. He was admitted to the hospital and later diagnosed with the
MERS coronavirus. Since May 9, 2014, the World Health Organization (WHO)
reported 536 laboratory-confirmed cases of MERS, including 145 deaths [WHO
(2014)].

For an effective treatment, a rapid and accurate detection of the source of viral
infection is crucial. The recent advent of deep DNA sequencing techniques has led
to a potentially powerful approach and it gives rise to a new type of classification
(discrimination) challenge.

Received May 2014; revised August 2015.
1Supported by public health service Grants CA019014, and AI107810 to DPD.
Key words and phrases. Virus hunting, nonlinear classification, high-dimension low-sample size

data analysis, DNA sequencing.

2090

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/15-AOAS869
http://www.imstat.org


RADIAL DWD 2091

A useful data space for virus detection comes from the DNA sequence and
alignment process, where virus-positive (the +1 class) and virus-negative (the −1
class) samples are sequenced and the sequenced DNA reads from each sample are
aligned to a target virus. Reviews of the DNA-sequence techniques can be found in
Goldstein et al. (2013), Mwenifumbo and Marra (2013), Rehm (2013) and Grada
and Weinbrecht (2013). A data vector counting the number of reads aligned to each
nucleotide position on the target virus is obtained for each sample. Thereafter, data
vectors from the 2 classes form the training set.

Because DNA sequencing is done at the base pair level of resolution, the read
depth vectors are quite long. As the number of samples is relatively smaller, this
analysis lies in the domain of high-dimension low-sample size (HDLSS) data,
which is an active research area where the dimension d of the data vectors is larger
than the sample size n; see, for example, Hall, Marron and Neeman (2005), Liu
et al. (2008), Jung and Marron (2009), Fan and Lv (2010), Shen, Shen and Marron
(2013) and Yata and Aoshima (2013). In this paper we focus on HDLSS binary
classification problems; see Marron, Todd and Ahn (2007) and Jiang, Marron and
Jiang (2009) for some examples.

An important aspect of DNA sequencing is that increasing the total number of
reads generated from a sample inflates entries of a data vector. In many cases,
the number of reads generated from samples differs either due to the sequencing
platform or to experimental settings; see, for example, in Metzker (2010). The fact
that we usually collect different numbers of reads for the samples is regarded as
a bench effect here. Bench effects may negatively impact the classification and
need to be handled properly. This is done here by normalizing each data vector by
dividing the entries by the L1 norm, which is simply the summation of the entries
in that vector, since they are nonnegative. Therefore, normalized vectors all have
unit L1 norms to control for the bench effect.

Instead of normalizing by the L1 norm, other methods could be used to adjust
for the bench effect, for example, normalizations based on the companion human
genome. Such methods would be attractive in situations where the goal was to
determine the amount of virus present. However, here our goal is to determine the
presence or absence of virus (and, in particular, we are focusing on trying to find
rather small amounts). In this context, our normalization seems the most powerful.

A consequence of this L1 normalization is that the normalized data vectors can
be geometrically represented as points on the standard unit simplex. Data points
with more nonzero entries lie more toward the interior of the unit simplex. When
all entries are approximately the same, the data point is near the center. On the
contrary, the more zeros in a vector, the closer this data point is to one of the
vertices of the unit simplex. In the extreme case with only one nonzero entry “1”
in the vector, the data point is at a vertex.

Figure 1 shows how different the virus positive and virus negative samples are,
and motivates exploiting simplex geometry, by showing an overlaid plot of nor-
malized data vectors from an HSV-1 (a human herpesvirus) detection problem.
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FIG. 1. Overlaid plot of 2 normalized data vectors from the HSV-1 positive (the +1) class in the
top panel and 3 data vectors from the HSV-1 negative (the −1) class in the lower panel, all with
different colors. The overall entries of the +1 data vectors are relatively small and have quite com-
parable amplitudes, while the entries of the −1 data vectors have “spikes” (which are located at
quite divergent positions).

HSV-1, or human herpesvirus-1, is the leading cause of nontraumatic blindness
and can cause fatal encephalitic disease in children. The virus can be treated with
acyclovir, if and only if diagnosed rapidly and accurately. Both serum and cerebral
spinal fluid are used for diagnosis and can be readily obtained for sequencing. In
Figure 1, we overlaid 2 (out of 8) data vectors for the HSV-1 positive (the +1) class
(top panel) and 3 (out of 24) data vectors from the HSV-1 negative (the −1) class
(lower panel). The overall entries of the positive data vectors are relatively small
and have relatively comparable amplitudes (top panel). The nonzero entries of the
negative data vectors are very sparse and have much larger amplitudes (about 200
times larger than that of the positive samples, lower panel of Figure 1). This is a
property of all virus detection problems, since the negative sequences are chosen
to be genetically very different from the virus. The aligned reads (from the nega-
tives to the virus sequence), on the other hand, are often short stretches of sequence
which are of reduced complexity, that is, repeats or single nucleotide (either A, C,
T or G) runs.

If we keep the same range of y-axis in plotting the positive data vectors as in
plotting the negative data vectors, one can see almost nothing since the amplitudes
of the former ones are much smaller than the latter ones. Equivalently speaking,
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FIG. 2. A simplified example of normalized data vectors of the positive (+1 class) data (red plus
signs) and the negative (−1 class) data points (blue circles). The unit simplex is shown as the gray
triangle. Because there are many zeros in the −1 data vectors, they typically locate at the vertices of
the unit simplex while the positives are closer to the center.

the positives are close to the center of the simplex, while the negatives lie near to a
diverse set of vertices of the unit simplex, because the differently colored spikes of
the negative data vectors are located at quite divergent positions. A simple model
for data on the unit simplex is given in Figure 2, where the 3-d unit simplex is
shown as a gray triangle while some +1 (−1) class data are shown as red plus
signs (or blue circles, resp.). It is not hard to see that linear methods will struggle
to capture the differences between classes in this case.

In our work, the DNA alignment data vectors are often of dimension 100,000 to
200,000, while the sample size is usually much smaller. Equivalently, data can be
seen as points on the high-dimensional unit simplex.

Figures 1 and 2 suggest that the −1 class departs from the center of the sim-
plex (where the +1 class lies) in many diverse directions so that the theoretical
Bayes classification boundary (assuming a probability distribution for each class)
is highly nonlinear. Note that the discrimination in radial directions appears to be
attractive. This motivates the development of Radial DWD in order to incorporate
such a nonlinear pattern. As detailed in Section 4, by optimizing a hypersphere
over its center and radius, Radial DWD separates the 2 classes, favoring putting the
+1 (−1) class inside (outside) the hypersphere. The computation of Radial DWD
through solving a sequence of Second Order Cone Programs Alizadeh and Gold-
farb, 2003 is carried out by an interior point optimization package called SDPT3,
developed by Tutuncu, Toh and Todd (2001). A future sample will be classified as
+1 (−1) when it is located inside (outside) the hypersphere.

A standard approach to HDLSS classification problems is linear methods, such
as Mean Difference [MD, Schölkopf and Smola (2002)], penalized logistic re-
gression with LASSO penalty [LASSO, Tibshirani (1996)], Support Vector Ma-
chine [SVM, Vapnik (1995), Shawe-Taylor and Cristianini (2004)] and Distance
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FIG. 3. An HSV-1 classification example to compare the performance of RBF kernel SVM and Ra-
dial DWD. Trained on red plus signs versus blue circles, the former method endures a high false
positive error since many negative test samples (gray x-symbols) are on the same side of the sepa-
rating boundary as the positive class, while Radial DWD successfully classified all positive HSV-1
samples (magenta asterisks) and related viruses (green asterisks) with no false positive.

Weighted Discrimination [DWD, Marron, Todd and Ahn (2007)]. Figure 2 sug-
gests that, as the dimension and diversity of the −1 class grow, such methods will
be severely inefficient. This issue is carefully studied for actual “virus hunting” in
Section 2 and by simulation in Section 3. It is natural to wonder if a more serious
competitor to Radial DWD is a nonlinear kernel Support Vector Machine classifi-
cation [Burges (1998), Hastie, Tibshirani and Friedman (2009)]. The most popular
of these is the Radial Basis Function (RBF) kernel. The virus detection capability
of these methods are compared in Figure 3, where RBF kernel SVM and Radial
DWD classification are illustrated. Note that in the machine learning literature,
RBF is a synonym for “Gaussian kernel.”

In Figure 3, RBF kernel SVM and Radial DWD are trained using 8 HSV-1 pos-
itive (red plus signs) and 24 HSV-1 negative (blue circles) data vectors, which
are partially shown as an overlaid plot in Figure 1. Signed distances to the corre-
sponding separating boundary (the black vertical dashed line) are depicted along
the x-axis as a jitter plot. Random heights are assigned in order to visually sep-
arate the points. Additionally, 127 new samples are used as a test set and kernel
density estimates are given for each group. While the majority of test samples are
shown as gray x-symbols, 4 are highlighted in magenta since they are HSV-1 pos-
itive human samples; 14 are highlighted in green since they are highly related her-
pesviruses (with nonhuman hosts). The related viruses share significant sequence
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identity (traditionally larger than 35%) with the reference virus, but may infect an-
imals rather than humans. Domestic cats and cattle, for instance, can be infected
with a herpesvirus homologous to HSV-1.

The performance of RBF kernel SVM is far from satisfactory: although positive
samples (magenta and green asterisks) are very close to the true positives, many
(69) grays (unrelated samples) are also classified as HSV-1 positive. This is ex-
pected since kernel methods require a type of “data richness,” that is not present in
the virus hunting problem. In particular, they work well in situations where train-
ing data can be found in all of the various regions where the test data will appear.
But in virus hunting data analysis, that completely breaks down.

Radial DWD shows a superior classification result not only because it cor-
rectly classified all HSV-1 positive samples but also because the positive samples
are grouped reasonably well: HSV-1 positive human samples (magenta asterisks)
are tightly clustered with the positive training data (red plus signs); related her-
pesviruses (green asterisks) are clustered according to the host species that they
infect—from the right to the left—monkey, pig and cattle. The grouping property
of Radial DWD can be exploited to classify new viruses, for example, in different
animal hosts, as they would be related, but not identical to the known ones.

For some data sets, it will be sensible to use a given point, for example, the
center of the simplex or the sample mean, as the centerpoint of the separating
sphere. Therefore, solving the associated optimization problem will be generally
easier. However, the center of the simplex seems inappropriate for virus hunting,
as due to various biological effects, even in the limit as the number of reads goes
to infinity, the read depth vector is not flat. The sample mean can be appropriate in
many situations, but as the centroid classifier is often a lot less efficient in many
high-dimensional biological settings, we expect Radial DWD to often be worth the
overhead of the more complex optimization. Furthermore, we also have our eye on
generalizing to other data types, where we believe the property of Radial DWD
having conventional DWD as a limit (as the center goes to infinity in a particular
direction, with the radius also growing) will become very important.

A full description of this HSV-1 classification is given in Section 2, where we
carefully compare Radial DWD with some linear and nonlinear competitors and
the superiority of Radial DWD under this radial context is discussed in detail.
A similar conclusion can be drawn from the simulation study in Section 3. Radial
DWD optimization and an iterative algorithm to solve it can be found in Section 4.
An introduction to virus detection, insights about the Dirichlet distribution and the
high-dimensional unit simplex, along with more details of our data sets and some
proofs, can be found in the supplementary materials in Xiong, Dittmer and Marron
(2015).

2. Virus detection data analysis. As briefly described in Section 1, Radial
DWD presents an appealing virus detection capability. A broader comparison be-
tween Radial DWD and its linear and nonlinear competitors is given in this section
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through analyzing a real data example of detecting the α-Human Simplexvirus 1
(α-HSV-1 or HSV-1). This virus is a subfamily of Human Herpesvirus (HHV).
The data set consists of the following 2 subsets:

• The training data are n+ = 8, n− = 24 vectors of dimension 152,261, which
is the DNA length of HSV-1. Entries of each data vector correspond to the nu-
cleotide positions in the virus DNA sequence. The training data of the +1 (HSV-
1 positive) and −1 (HSV-1 negative) classes are normalized to the unit simplex
(of dimension 152,261). The +1 class tends to locate near the center while the
−1 class tends to locate near a diverse set of vertices of the simplex. Classifiers
are trained using the +1 versus the −1 classes.

• The test set consists of the DNA alignment vectors from the following samples:
4 HSV-1 positive human samples (not appearing in the training), 14 nonhuman
α Simplexvirus-1 (including 5 monkey Simplexvirus-1, 8 pig Simplexvirus-1
and 1 cow Simplexvirus-1) and 109 much more distantly related viruses.

Nonzero data vectors are normalized to the unit simplex and can be viewed as
points on it. Samples whose DNA alignment vectors are zero vectors are put at
−∞. This is reasonable since zero vectors only exist in the −1 class training set or
the test set: (a) if the sample comes from the −1 class training set, it has no effect
on the calculation of the separating sphere (interpreting the reciprocal of −∞ to
be zero); (b) if the sample comes from the test set, it should surely be classified as
−1 and −∞ is viewed as outside the separating hypersphere.

The classification performance of Radial DWD is compared with a number of
popular classification methods including MD, LASSO, linear DWD, SVM and
RBF Kernel SVM in Figure 4. Quadratic SVM gave results that were quite similar
to RBF SVM, so it is not shown here. For methods including a separating plane,
relative performance comes from the projection onto the normal vector, shown
as the horizontal axes in Figure 4. Radial DWD is similarly interpreted as the
signed distance to the separating sphere. The +1 training data are shown as red
plus signs, −1 training data as blue circles, HSV-1 positive human samples (real
human DNA samples that are infected by HSV-1) as magenta asterisks, related
α simplex herpesviruses as green asterisks and other samples as gray x-symbols
(known to be HSV-1 negative). The position of the separation boundary is shown
by the black vertical dashed line. Signed distances to the separating boundaries are
depicted along the horizontal axis, while the vertical perturbation is used for visual
separation of the points. Kernel density plots are provided as well.

Panels (e) and (f) are the same as in Figure 3 (except that the length-width ra-
tio of the figures are different) and the superior performance of Radial DWD is
explained there. While the training data is well separated in all cases in Figure 4,
the good classification property may not carry over to the test samples. The per-
formance of MD, SVM, DWD and RBF SVM tend to be similar in this example
where the false positive rates are very high (larger than 50%), that is, most of the
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FIG. 4. Real data example of an HSV-1 classification problem. We show 6 panels of 1-dimen-
sional “signed distance to separating boundary” plots to compare Radial DWD [panel (f)] with MD,
LASSO, linear DWD, SVM and RBF SVM. Red plus signs are +1, blue circles are −1, magenta aster-
isks are HSV-1 positive humans, green asterisks are related nonhuman herpesviruses, gray x-symbols
are nonpositive samples. Figure 4 shows the superior performance of Radial DWD.

negative gray x-symbols are to the left of the dashed line. This performance con-
trasts sharply with panel (f) where all gray x-symbols are to the right. Meanwhile,
LASSO presents a unique behavior with zero false positive. However, it fails to
correctly classify 8 (out of 14) HSV-1 related viruses (green asterisks) since they
fall on the left-hand side of the LASSO-separating hyperplane. The other 6 HSV-1
related viruses are much further from the positive training data (red plus signs) to
the right. Our simulations show that LASSO tends to pick out a small subset of
nucleotide positions and classify data merely based on very limited information
gained on those positions, which results in poor classification.

An additional insightful comparison of methods using simulated data sets ap-
pears in Section 3 and Radial DWD will be shown to have a much better clas-
sification accuracy in terms of both lower false positive and lower false negative
error rates, while all the other competitors considered here perform poorly. Note
that real data examples of β-HHVs and γ -HHVs (the other 2 subfamilies of HHV)
classification were also analyzed and examples can be found in the supplementary
materials in Xiong, Dittmer and Marron (2015).

In addition to giving outstanding classification results when one class is widely
distributed around the other, the computation of Radial DWD is fast enough to be
useful for modern scale bioinformatics data sets. The computational speed is nearly
independent of the dimension of the data vectors because the method is based on
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FIG. 5. A simulated example illustrating the potential for improved performance of Radial DWD,
in the spirit of Figure 4. Class +1 is shown as red pluses, −1 as blue circles, test samples as gray
x symbols. The vertical axis shows random heights to visually separate the points, along with kernel
density estimates (i.e., smooth histograms). The separating boundaries are calculated using the fol-
lowing: (a) MD, (b) Linear SVM, (c) Linear DWD, (d) LASSO, (e) RBF SVM and (f) Radial DWD.
Except Radial DWD, all the other methods have poor classification performance for the test samples,
which should be mostly to the left of the dashed line in each case.

a QR decomposition (see Section 4 for detail). In particular, the full set of simula-
tions shown in Section 3, involving many replications, was done in a few hours.

3. Simulation study. Section 2 showed that Radial DWD outperforms its lin-
ear and nonlinear competing classifiers for real virus detection data, and this idea
is further emphasized in this section by a simulation study. Our simulations are
based on Dirichlet distributions which are a popular and broad family of distri-
butions on the unit simplex. Figure 5 shows the classification results, aimed at
modeling the behavior observed in real data in Figure 4, detailed in Section 3.1.
Broader simulation results are discussed in Section 3.2.

3.1. Simulation 1. The simulated data in Figure 5 have dimension d = 50,
with n+ = 20 class +1 samples represented as red plus signs and n− = 20 class −1
samples represented as blue circles. Data are simulated using the Dirichlet distri-
bution Dirichlet(α), supported on the unit simplex.

The parameter α ∈ Rd+ determines the mode and dispersion of the Dirichlet
distribution. If all the entries in α are the same, the distribution is centered on
the unit simplex. Suppose the common entries are larger (less) than 1, increas-
ing (decreasing) the entries makes the distribution more concentrated to the center
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(vertices) of the unit simplex; suppose the common entries are exactly 1s, the cor-
responding distribution is the uniform on the simplex. Examples in 3 dimensions
can be found in the supplementary materials in Xiong, Dittmer and Marron (2015).

The +1 class data in Figure 5 are drawn from Dirichlet(α+) with α+ =
(5, . . . ,5) and the −1 class data are generated from Dirichlet(α−) with α− =
(0.5, . . . ,0.5).

Classifiers, including MD, LASSO, linear SVM, RBF Kernel SVM, DWD and
Radial DWD, are trained on the red pluses and blue circles. We assess the perfor-
mance by classifying 200 new test samples drawn from the −1 class population.
The test samples are shown in Figure 5 as gray x symbols. Note that the Quadratic
Kernel SVM (QSVM) was also considered. It performed very similarly with RBF
SVM in this particular example, and hence is not shown here.

In each panel of Figure 5, the signed distances of the data points to the optimal
separating hyperplane are shown on the horizontal axes. The position of each sep-
arating hyperplane is shown as a dashed line. Data points that fall on the same side
of the hyperplane as the +1 (−1) class will have positive (negative) distances. Ker-
nel density plots (e.g., smooth histograms) are provided as another way of viewing
the population of each class. As shown in Figure 5(a), MD performs poorly (with
many gray test points to the right of the boundary) since the separation of classes
in this example is not a shift of means. In particular, 152 out of 200 samples are
misclassified as +1. Figure 5(b) shows that the 2 training classes are linearly sep-
arable by using SVM, but the training data from both classes pile up at the margin.
Moreover, 129 out of 200 test samples are misclassified as +1.

Data piling is a sign of overfitting and is very undesirable since the correspond-
ing separating hyperplane is driven heavily by the particular realization of the data
at hand [see Marron, Todd and Ahn (2007)]. DWD was developed to address this
ubiquitous problem with SVM, yet Figure 5(c) is similar to (b). The phenomenon
of data piling is diminished as expected from the ideas of Marron, Todd and Ahn
(2007). However, the performance of DWD for this test set is far from satisfactory
because radial separation is the key: again, many (142 out of 200) test samples are
misclassified as +1.

Classification using LASSO is illustrated in Figure 5(d). The training data are
well separated, but 117 of the 200 test samples are misclassified. Figure 5(e) shows
the classification using the RBF (nonlinear) Kernel SVM. When the training set is
linearly separable, kernel SVM behaves like the linear counterpart but may overfit
the training data more severely under HDLSS assumptions. Although the dimen-
sion is fairly moderate, data piling still exists. The expected improvement over the
linear counterpart is present in the sense that only 120 out of 200 test samples are
misclassified, although this is still unacceptably poor.

A much improved performance and classification accuracy can be observed in
Figure 5(f) where Radial DWD is applied. Training data are well separated with
no signs of data piling and, except for one test data point, all the other test samples
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are correctly classified, showing that Radial DWD solves the overfitting problem
one may intuitively expect from the RBF kernel SVM in HDLSS radial contexts.

It is not surprising that, despite the underlying nonlinear pattern, SVM and
DWD successfully separate the 2 training classes due to the large size of the data
space. However, the good classification performance does not carry over to the
test samples, which may differ from the +1 class in directions that do not appear
in the −1 class training data. This highlights the limitation of linear methods in
this type of context. Figures 4 and 5 together make it clear that the intuitive ideas
in Section 1 are indeed the drivers of the observed superior performance of Radial
DWD. Thus, simulating data from the Dirichlet distribution is useful and insightful
to understand the data structure of the virus discovery.

3.2. Simulation 2. Next a broader simulation study is conducted. The training
data and the test data are simulated on the unit simplex using Dirichlet(α) with α

summarized in Table 1. In each example, n+ = 20 +1 class and n− = 50 −1 class
data of dimension d = 10,50,100,500,1000,5000,10,000,50,000,100,000 are
generated in order to cover a range from non-HDLSS to extreme HDLSS cases.
Additionally, in panels (a1) and (a2), 5000 test samples are drawn from the −1
class in order to assess the false positive rate; in panels (b1) and (b2), 5000 test
samples are drawn from the +1 class in order to assess the false negative rate.
Thirty repetitions are done for each case and each dimension.

The tuning parameters in LASSO, (linear/Quadratic/RBF) SVM, DWD are de-
termined by 5-fold cross-validation. Classifiers are trained using the +1 versus the
−1 class. Classification error (false positive and false negative) is calculated for
classifying the 5000 test samples and is illustrated in Figure 6.

In the first simulation in panels (a1), (b1) and (c1), the +1 class is simulated
uniformly on the simplex using Dirichlet(1 · · ·1), while the −1 class is simulated
near the vertices of the simplex, as given in Table 1. The class separation is hard
in low dimensions, but, as dimension grows, the relatively low sample size of the
training data makes the separation easier. It can be seen in panel (a1) that when
dimension is low (around 10), RBF kernel SVMs and Radial DWD perform simi-
larly well with false positive error rates below 10%, LASSO and Quadratic kernel
SVM follows and all the other linear methods perform poorly. As dimension goes
to ∞, the false positive error of Radial DWD shrinks to zero quickly, while that
of the MD/SVM/DWD/RBF kernel SVM/Quadratic kernel SVM goes to 1; that of
LASSO converges to around 50%. A quite different tendency can be observed in
panel (b1) when the false negative rate is being examined. When dimension is low,
LASSO tends to have a very large false negative error, but the error shrinks to zero
quickly as dimension grows, as do the false negative error rates for the other meth-
ods. The average of the 2 types of errors is summarized in (c1). It is not hard to see
that the kernel SVMs and Radial DWD are comparably good in low dimensions;
the error rate of the former one converges to around 50%, while that of the latter
one converges to zero quickly as dimension grows. Additionally, the average error
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FIG. 6. A simulation study illustrating the potential for improved performance of Radial DWD.
The false positive rate is depicted in panels (a1) and (a2) under each parameter setting, with the
corresponding false negative rate (under the same training setup) in (b1) and (b2). The average of
the false positive and false negative rate is shown in panels (c1) and (c2), respectively. Classification
error is calculated for the following: −· MD ·· LASSO, −− Linear/Quadratic/RBF SVM, − Linear
DWD and − Radial DWD (RDWD). A color key is also given. Error bars are obtained by repeating
the simulation 30 times for each dimension d . Figure 6 shows the outstanding performance of Radial
DWD relative to typical methods in these radial settings.

rate of MD/SVM/DWD is relatively stable (around 50%); the average error rate of
LASSO is around 35% for large dimensions.

The second simulation in panels (a2), (b2) and (c2) is similar to the first except
that the −1 class is closer to the center. This is even a harder classification problem
when dimension is low. An almost opposite tendency could be observed in (a2) and
(b2), compared to (a1) and (b1). Except LASSO, the false positive rate [in (a2)] of
all methods shrinks to zero, while that of Radial DWD decreases much faster; the
false positive error rate of LASSO is around 35% for large dimensions. Shown in
panel (b2), the false negative error rate of Radial DWD still decreases to zero as
dimension grows, however, the error rates of its competitors goes to 1 (or above

TABLE 1
Parameter α used in simulation

Case # +1 class −1 class Corresponding panels in Figure 6

1 (1 · · ·1) (0.1 · · ·0.1) (a.1) (b.1) and (c.1)
2 (1 · · ·1) (0.5 · · ·0.5) (a.2) (b.2) and (c.2)
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60% for LASSO). The average of the false positive and the false negative rate is
illustrated in panel (c2) where a similar pattern as (c1) can be observed, except that
even in low dimensions, kernel SVMs did not work as well as Radial DWD. When
dimension is high, all Radial DWD’s competing classifiers have error rates around
about 50% (i.e., essentially random choice).

We also studied several other examples [see Supplement in Xiong, Dittmer
and Marron (2015)]. They show fairly similar results. As suggested by our cur-
rent simulations, Radial DWD outperforms MD, LASSO (linear, Quadratic, RBF)
SVM and linear DWD when the radial separation is the key player to discriminate
classes. As noted before, the full set of simulations shown in Section 3, involving
many replications, was done in a few hours.

Radial DWD performs well with this type of data because of the particular ge-
ometry. In Figure 1, we show that there are scaling issues with these coverage
vectors as data objects, which are handled by dividing by the sum of the entries.
This transformation means the data live on the unit simplex, hence, we study its
geometry. Furthermore, because the dominant spikes in Figure 1 are in different
locations, the data negative samples are widely distributed around the simplex, in
many different directions. We tried to illustrate this phenomenon with a grossly
simplified (because human perception tends to fail beyond 3 dimensions) toy ex-
ample in Figure 2. But it is the major exaggeration of this effect, that naturally
occurs in this HDLSS context, that drives the major breakthrough of Radial DWD
relative to the existing competitors (which were not designed for this setting).

4. Radial DWD optimization.

4.1. Formulate the optimization problem. To set notation, let n denote the
number of training d-vectors xi with corresponding class labels yi ∈ {−1,+1}, i =
1 · · ·n. We let X denote the d × n matrix whose columns are xi . Let e denote an
n-vector of 1s. Let n+ = ∑n

i=1 I{yi=+1} and n− = ∑n
i=1 I{yi=−1} = n − n+ be the

sample size of the +1 class and the −1 class, respectively. Denote O ∈ Rd as the
center of a candidate separating sphere, and let R ∈ R+ be the radius, and define
the signed residual of the ith data point as r̄i = yi(R − ‖xi − O‖2), where ‖ · ‖2
represents the Euclidean norm. We would like to search for O and R such that r̄i
are positive and large, which requires the +1 class to lie inside and the −1 class to
lie outside the hypersphere. However, in order to incorporate the case when the 2
classes are not separable by a hypersphere, we allow classification error by adding
nonnegative “slack variable” εi , as in Burges (1998) and Marron, Todd and Ahn
(2007), and define perturbed residuals as ri = yi(R − ‖xi − O‖2) + εi . We now
define the optimization problem for Radial DWD as follows:

Minr,O,R,ε

∑
i

1

ri
+ CeT ε

s.t. ri = yi

(
R − ‖xi − O‖2

) + εi, i = 1, . . . , n,(4.1)

R ≥ 0, r ≥ 0, ε ≥ 0,
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where r is a vector of ri , ε is a vector of εi and r ≥ 0 and ε ≥ 0 are in the
component-wise sense, and C is the penalty parameter of misclassification, as ap-
pears in SVM and DWD. It can be seen that the influence of the −1 class data
decreases as they get further away from the separating hypersphere. The influ-
ence shrinks to zero for the −1 class data located at infinity. However, this is not
true for the +1 class (because of the penalty term). Following Marron, Todd and
Ahn (2007), we linearize the objective function by defining ρi = (ri + 1

ri
)/2 and

σi = ( 1
ri

− ri)/2, so that 1
ri

= ρi + σi , ri = ρi − σi . Additionally, we relax the
constraints {

ρ2
i − σ 2

i = 1, ρi − σi ≥ 0, i = 1, . . . , n
}

to the second order cone constraint{
(ρi, σi,1) ∈ S3, i = 1, . . . , n

}
,

where the Second Order Cone of dimension k is defined as

Sk = {
(ς;μ) ∈ Rk : ς ≥ ‖μ‖2

}
.

One can show that when the 2 classes are separable by using a hypersphere, this
relaxation will not change the optimal solution. By the transformation of 1

ri
and

the substitution with Second Order Cone constraints, the optimization problem
becomes

Minρ,σ,O,R,ε

∑
i

(ρi + σi) + CeT ε

s.t. ρi − σi = yi(R − di) + εi, di = ‖xi − O‖2, i = 1, . . . , n,
(4.2)

(ρi, σi,1) ∈ S3, i = 1, . . . , n,

R ≥ 0, ε ≥ 0.

This problem is almost a Second Order Cone Program except that the equality
constraints {

di = ‖xi − O‖2, i = 1, . . . , n
}

are nonlinear (which also makes the problem nonconvex). We use the first order
Taylor expansion iteratively to approximate the nonlinear equalities by linear ones,
which is detailed in the following algorithm in Section 4.2.

4.2. An iterative algorithm to numerically solve radial DWD. We consider
applying the first order Taylor expansion iteratively to bypass the nonlinearity of
the equality constraints and numerically solve Radial DWD:

Initialization (Step 0): Choose an initial center of the separating hypersphere
and denote it as O0 (e.g., the mean or the coordinate-wise median of the +1 class
training data), let the initial objective value be Obj0 = −1 (an arbitrary negative
number).
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The iteration at Step k: k ≥ 1. Apply the first order Taylor expansion on di

around Ok−1, that is,

di = ‖xi − O‖2

≈ ∥∥xi − Ok−1∥∥
2 + (∇O=Ok−1‖xi − O‖2

)T (
O − Ok−1)

= ∥∥xi − Ok−1∥∥
2 − (xi − Ok−1)T

‖xi − Ok−1‖2

(
O − Ok−1) := d

′
i .

Notice that d
′
i is a linear function of O . By substituting di with d

′
i , the optimiza-

tion becomes a valid Second Order Cone Program and could be solved for Ok and
Rk using SDPT3. Let Objk be the current objective value at step k.

Stop: if |Objk − Objk−1| < ε, where ε is a predetermined precision parameter.

At each step k, to approximate well the nonlinear terms by using the first order
Taylor expansion, we further confine Ok in a neighborhood of Ok−1 (the solution
computed from the previous step) by adding one more constraint: ‖Ok −Ok−1‖2 ≤
δk , where δk ∈ R+ is called the step length parameter. A small δk guarantees the
precision of the Taylor expansion but may slow down the computation. This ad-
ditional constraint is a Second Order Cone constraint (δk,O

k − Ok−1) ∈ Sd+1 so
that we still end up with a valid Second Order Cone Program at step k. In our
current data analysis, we choose ε = 10−4 and δk = 10−3. The choice of penalty
C will be revisited after the discussion of Radial DWD optimality conditions in
Section 4.3.

4.3. The dual problem of radial DWD. To gain more insights about Ra-
dial DWD optimization, it is useful to give the dual formulation of the Second

Order Cone Program (at the kth step). Let wk−1
i = xi−Ok−1

‖xi−Ok−1‖2
∈ Rd , dk−1

i =
‖xi − Ok−1‖2 and they are functions of xi (since Ok−1 is computed from the
previous step). After some algebra, we could formulate the dual program at step k

as follows:

Maxz

∑
i

yizid
k−1
i + δk

(
−

∥∥∥∥
∑
i

yiziw
k−1
i

∥∥∥∥
2

)
+ 2

∑
i

√
zi

s.t. 0 ≤ zi ≤ C, i = 1, . . . , n,(4.3) ∑
i

yizi ≤ 0.

The primal and dual problems can be expressed more compactly in matrix-
vector form. Keep all the defined notation unchanged and denote y as an n-
vector of yi , z an n-vector of zi , ρ and σ the n-vectors of ρi and σi , respec-
tively, Y an n-by-n matrix with yi on the diagonal. Additionally, let Wk−1 =
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(wk−1
1 , . . . ,wk−1

n ) ∈ Rd×n with wk−1
i defined above, �k−1

O = O −Ok−1 ∈ Rd and
dk−1 = (dk−1

1 , . . . , dk−1
n )T ∈ Rn. Then, the primal-dual pair becomes

(Primal) Min
ρ,σ,�k−1

O ,R,ε
eT ρ + eT σ + CeT ε

s.t. σ − ρ + Ry + YWT
k−1�k−1

O + ε = Ydk−1,
(4.4) (

δk,�k−1
O

) ∈ Sd+1, (ρi, σi,1) ∈ S3, i = 1, . . . , n,

R ≥ 0, ε ≥ 0,

(Dual) Maxz dT
k−1Yz + δk

(−‖Wk−1Yz‖2
) + 2eT √

z

s.t. 0 ≤ z ≤ Ce,(4.5)

yT z ≤ 0,

where
√

z is a n-vector with
√

zi as entries.
One can show the existence of strict feasible solutions to both the primal and

dual problems. Since the primal and the dual are convex, it follows that the solu-
tion of the following optimality conditions are guaranteed to be optimal or, equiv-
alently, the following equations are sufficient and necessary optimality conditions:

σ − ρ + Ry + YWT
k−1�k−1

O + ε = Ydk−1,

0 < z ≤ Ce, ε ≥ 0, (Ce − z)T ε = 0,

R ≥ 0, yT z ≤ 0, R
(
yT z

) = 0.

Either Wk−1Yz = 0 and
∥∥O − Ok−1∥∥ ≤ δk,

or
∥∥O − Ok−1∥∥

2 = δk(Wk−1Yz)/‖Wk−1Yz‖2,

ρi = zi + 1

2
√

zi

σi = zi − 1

2
√

zi

for all i = 1, . . . , n.

It is important to note that the optimal radius is strictly positive in case the
2 training classes are separable and the penalty term C is large enough, which
is shown in Theorem 1 [see the supplementary materials in Xiong, Dittmer and
Marron (2015)]. If this is true, we could replace the condition {R ≥ 0, yT z ≤
0,R(yT z) = 0} by {R > 0, yT z = 0}. As one will see in Section 4.4, this con-
dition gives an insight to the Radial DWD optimization. Besides, Theorem 1 also
implies that the choice of the penalty parameter C should satisfy the following:
C(dk−1

i )2 > 1 for all di , i ∈ {i : yi = −1}.
Solving the primal/dual problem in an ultra high dimension may be inefficient.

To deal with this issue, we first factor the data matrix X using a QR decomposition,
for example, X = QU where Q ∈ Rd×n has orthonormal columns and U ∈ Rn×n

is an upper triangular matrix. Then we solve the optimization problem by replacing
X by U and call it a reduced problem. The reduced problem could be solved more
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efficiently because it shrinks the intrinsic dimension of the problem from d to the
sample size n. Note that it is fairly easy to recover X from U once we solve the
reduced problem. The reduced problem does not change the optimal solution or
the optimal value, which is shown in Theorem 2 [see the supplementary materials
in Xiong, Dittmer and Marron (2015)].

4.4. Interpretation of the radial DWD dual problem. Assume that the two
classes are separable with a “proper” hypersphere (a hypersphere with nonzero
radius R > 0) so that yT z = 0 is obtained at optima. Notice that yT z = 0 im-
plies eT+z+ = eT−z−, where z+(z−) is the subvector of z corresponding to the
+1 class (−1 class) and e+(e−) the corresponding vector of ones. It makes
sense to scale z such that eT+z+ = eT−z− = 1. We can write z as ηz∗, where η

is a positive scalar and z∗ satisfies the additional scaling condition. By max-
imizing the dual objective function with respect to η for a fixed z, we find if
−dT

k−1Yz∗ + δk(‖Wk−1Yz∗‖2) > 0,

√
η̂ = eT

√
z∗

−dT
k−1Yz∗ + δk(‖Wk−1Yz∗‖2)

.

Equivalently, the dual objective function becomes

Maxz∗
(eT

√
z∗)2

−dT
k−1Yz∗ + δk(‖Wk−1Yz∗‖2)

.(4.6)

Moreover,

dT
k−1Yz∗ − δk

(‖Wk−1Yz∗‖2
)

=
(∑

i∈P

dk−1
i z∗

i − ∑
i∈N

dk−1
i z∗

i

)
− δk

∥∥∥∥
∑
i∈P

xi − Ok−1

dk−1
i

z∗
i − ∑

i∈N

xi − Ok−1

dk−1
i

z∗
i

∥∥∥∥
2
,

where P is the index set of the +1 class, and N the index set of the −1 class.
Since

∑
i∈P z∗

i = 1 with z∗
i ≥ 0,

∑
i∈P dk−1

i z∗
i is a convex combination of

dk−1
i , i ∈ P , and it can be interpreted as an average distance from the current

center of the separating sphere to the +1 class data points. A similar interpreta-
tion applies for

∑
i∈N dk−1

i z∗
i . When the two classes are separable (and R > 0),

the positive (negative) data points will be located inside (outside) the separating
sphere so that the average distances of negative points are larger than that of the
positive ones, which implies∑

i∈P

dk−1
i z∗

i − ∑
i∈N

dk−1
i z∗

i < 0 or −dT
k−1Yz∗ > 0.

From the above observation, −dT
k−1Yz∗ + δk(‖Wk−1Yz∗‖2) > 0 is true when two

classes are separable. Note that −dT
k−1Yz∗ is a measure of separability of the 2

classes and the bigger the absolute value, the bigger the separability. Meanwhile,
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wk−1
i = xi−Ok−1

dk−1
i

is a vector of unit Euclidean norm, pointing from the current

center to each data point. Define the centroid of the +1 (−1) class as the con-
vex combination of wk−1

i , i ∈ P (or i ∈ N , resp.) under weights z∗
i . Therefore,∑

i∈N
xi−Ok−1

dk−1
i

z∗
i − ∑

i∈P
xi−Ok−1

dk−1
i

z∗
i is the vector pointing from the centroid of the

+1 class to the centroid of the −1 class, and its Euclidean norm scaled by δk is
also a measure of separability. As a consequence, the whole denominator of (4.6)
is positive and is a measure of separability of the 2 classes. To ensure optima, the
dual problem minimizes the separability between classes divided by the square of
the sum of the square roots of the convex weights.

Note that in some situations, the proportions of the 2 classes in the data set may
not reflect the real proportions in a target population due to sampling bias, or the
2 classes are extremely unbalanced. The separating boundary tends to be closer to
the class with smaller training sample size. In the case of biased sampling or un-
balanced data, a weighted version of Radial DWD is more appropriate. Qiao et al.
(2010) developed a weighting scheme to improve linear DWD and we follow the
same line to set up weighted Radial DWD, by optimizing the following objective
function:

∑
i

w(yi)

{
1

ri
+ CeT ε

}
(4.7)

subject to the same set of constraints defined before. Note that w(yi) is the weight
associated with the ith training data point and it only depends on the class la-
bel yi . In our data analysis we use w(+1) = n−

n++n− ;w(−1) = n+
n++n− as default.

The above discussion about the Radial DWD optimization could be easily gener-
alized to the case when weights are applied.

5. Conclusion. In this article we have proposed a nonlinear binary classifier,
Radial DWD, for the virus hunting data analysis, where the virus positive class is
surrounded by the negative class in very diverse radial directions. Because of the
nonlinearity of classes, linear methods, including MD, LASSO logistic regression,
SVM and DWD, perform poorly with high classification error. Meanwhile, kernel
SVM shows a very limited improvement over its linear counterpart in high dimen-
sions. Since standard nonlinear methods, including kernel methods, require a type
of “data richness,” that is not present in the virus hunting problem. In particular,
they work well in situations (such as all the usual machine learning examples)
where training data can be found in all of the various regions where the test data
will appear. But in our particular data context, that completely breaks down, so all
the classical nonlinear methods fare just as poorly as the linear ones. By using a
much more appropriate spherical separating boundary, Radial DWD shows both
low false positive and low false negative classification error. These are shown by
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real data analysis and simulation studies. Its computation through solving a se-
quence of Second Order Cone Programs is efficient, even with high-dimensional
data.

We believe Radial DWD will be applicable in some settings beyond virus hunt-
ing. This will happen in classification contexts where there is one class with rel-
atively small variation, and the other with much larger variation tending toward a
number of quite divergent directions. For example, cancer is a disease of some-
times massive disruption of the genome, and these disruptions can go in many di-
verse directions, while the normal genome is far more stable. Another potential for
this methodology comes in imaging bones and cartilage, where the normal popu-
lation is relatively homogeneous, but severe wear and other types of abnormalities
can go in many directions in the image space.
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SUPPLEMENTARY MATERIAL

Supplement to: “Virus hunting” using Radial Distance Weighted Discrimi-
nation. (DOI: 10.1214/15-AOAS869SUPP; .pdf). In the supplementary materials,
we first introduce some useful biology background for virus detection in Section 1,
DNA alignment process in Section 2, and then discuss the insights of the Dirichlet
distribution in Section 3. Real data examples and simulation studies are included
in Sections 4 and 5, respectively. Theorems and proofs are in Section 6.
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