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Abstract

This review will provide an overview of the notion that Kaposi sarcoma (KS) is a

disease that manifests under diverse and divergent circumstances. We begin with a

historical introduction of KS and KS‐associated herpesvirus (KSHV), highlight the

diversity of clinical presentations of KS, summarize what we know about the cell of

origin for this tumor, explore KSHV viral load as a potential biomarker for acute

KSHV infections and KS‐associated complications, and discuss immune modulators

that impact KSHV infection, KSHV persistence, and KS disease.
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1 | INTRODUCTION

In 1981 a cluster of Kaposi sarcoma (KS) diagnoses in NewYork and San

Francisco heralded the beginning of the acquired immune deficiency

syndrome (AIDS) pandemic.1 KS was a clinical marker of AIDS before

either human immunodeficiency virus (HIV), or KS‐associated herpes-

virus (KSHV), were discovered. Multifocal lesions, sometimes flat,

sometimes nodular, indicated a severe loss of adaptive immune control.

At that time, in HIV‐uncontrolled AIDS patients, KS lesions occurred at

CD4 counts below 200 cells per µL. This manifestation of KSHV

infection is commonly referred to as AIDS‐KS. AIDS‐KS has skin and

internal manifestations (Figure 1A—Lung lesion picture). AIDS‐KS

patients have or had concurrent infections of KSHV with other

microorganisms, such as viruses, fungi, or bacteria.

Today, 40 years later, late‐stage AIDS KS cases are rarer, but KS

remains among the leading cancers in male people living with HIV

(PLWH), including those who never developed AIDS and successfully

suppressed HIV viral loads.3–5 This begs the question: is the KS we

treat today the same as it was 40 years ago? Is it the same as almost

200 years ago when Moritz Kaposi discovered this disease in

HIV‐negative, elderly men?

Moritz Kaposi first described KS in 1884 in Vienna, Austria

(reviewed in6). At the time, Vienna was the most cosmopolitan city on

earth. Here, travelers and migrants from across the realm of the

Habsburg empire converged. Since 1883 the Orient Express

connected Vienna with Constantinople and from there to the Levant,

that is, the eastern Mediterranean. Moritz Kaposi was the director of

the skin clinic at the Vienna General Hospital. He was among the first

to describe xeroderma pigmentosum. At that time, the Vienna

General Hospital was the site of the famed Viennese Medical School,

where some years earlier, Ignaz Semmelweis formulated basic ideas

of hygiene. In broad strokes, one can compare Vienna General

Hospital in 1880 with San Francisco General Hospital in 1980: both

were centers of clinical excellence where physicians conducted

discovery science.

The first case of Sub‐Saharan KS was noted in 1960,7 before

the emergence of HIV in the region and shortly after Dennis

Burkitt described Burkitt lymphoma (BL) in the same country. BL,

of course, is famously associated with Epstein−Barr virus (EBV).

Once the viral association between EBV and BL was established,

the idea of tumor‐causing viruses gained acceptance. It was

reinforced by the discovery of the human papillomavirus (HPV)—

cervical cancer association. Since then, the possibility of an

infectious etiology for human cancers has been on physicians' and

epidemiologists' minds. The emergence of HIV‐associated cancers

suggested an infectious agent as the cause of KS. It led to the
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discovery by Chang and Moore of KSHV8 in 1994. Once the viral

etiology of KS was revealed, research began in earnest, and our

understanding of the pathobiology of this cancer grew exponen-

tially. To date, PubMed records 17 108 entries under the keyword

“Kaposi sarcoma.”

2 | KS HAS DIVERSE MANIFESTATIONS
BUT A UNIFIED ETIOLOGY: KSHV

A recent estimate counts non‐Hodgkin lymphoma, KS, HPV‐

associated anal cancer, and lung cancer as the most significant

cancer contributors to years of life lost among PLWH in the United

States; these diseases are concentrated mainly in black PLWH, men

who have sex with men (MSM), and the 40−59 year age bracket.9 The

risk of developing KS in PLWH is elevated several 100‐fold compared

with the general population.10 The human oncogenic herpesvirus

KSHV is the underlying etiological agent for the clinical manifesta-

tions recorded at the turn of the 19th century Vienna, in AIDS

patients in 1981 New York and San Francisco, children in Eastern

Africa, and adults in Xinjiang province in China, today.11,12

In KSHV‐endemic areas, KSHV acquisition precedes sympto-

matic disease by many years (the exception being pediatric KS). In

1980s AIDS patients, KSHV seroconversion preceded KS disease by

~33 months.13 This may be an anomaly, however, brought about by

the simultaneous introduction of both HIV and KSHV into a

population that experienced high transmission rates for both viruses.

It is important to reemphasize that even in PLWH, KS can develop in

persons without detectable HIV and near‐normal CD4 counts.3,4 We

do not have a specific name for this subtype of KS but would suggest

that it not be called AIDS‐KS because the patients do not have AIDS,

only KS. For this review, we refer to it as HIV‐KS.

The unifying principle of all KS is exposure to KSHV. KSHV

infection is either accompanied or followed by transient immune

deficiency that predisposes a person to KS. If there is no virus

encounter, then there is no cancer predisposition. Thus, KSHV

partially fulfills Koch's first postulate. Not every KSHV‐infected

person develops KS, however. Instead, a fixed probability exists that

a person infected with KSHV will develop clinically apparent disease.

This holds for all the human oncogenic viruses, KSHV, EBV, HPV,

human T‐lymphotropic virus (HTLV‐1), hepatitis C virus, and Merkel

cell polyomavirus (MCPyV). The immune status and other factors

influence the probability of conversion from infection to clinical

disease.

KSHV is present at varying copy numbers in the blood of people

who develop KS. For example, Figure 1B shows viral load data from a

cohort of PLWH on stable combination antiretroviral therapy (cART)

requiring anticancer therapy for their KS.2 While most patients with

clinically apparent disease had detectable KSHV genomes in blood,

KSHV viremia with >1000 copies per mL was rare, even for patients

with multiple KS lesions. This is consistent with transcriptional

profiling data that show most KS lesions harbor latent viruses.14,15

However, there are exceptions. Some KS lesions transcribe almost

the full complement of the viral transcriptome, and the KSHV‐

associated conditions plasmablastic variant of multicentric Castle-

man's disease (MCD)16 and KSHV‐associated inflammatory cytokine

syndrome (KICS)17,18 are associated with pronounced systemic

viremia.18,19 KICS patients can have as many as five million KSHV

genome copies per mL.20 KSHV viral load measurements in the blood

F IGURE 1 (A) Picture of KS lesions in the lung. Arrows indicate a
nodular lesion (N) and a flat lesion (F). (B) Distribution of KSHV
plasma viral loads (DNA genome copies/mL) in a cohort of 29 PLWH
on successful cART presenting with KS requiring cancer therapy
(data from2). cART, combination antiretroviral therapy; KS, Kaposi
sarcoma; KSHV, KS‐associated herpesvirus; PLWH, people living
with HIV.
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may be utilized to detect MCD and KICS, which can cooccur in KS

patients.17,21 While associated with concurrent primary effusion

lymphoma (PEL), MCD, and KICS, systemic KSHV viral loads may also

correlate with the number of KS lesions or other indicators of disease

severity.

KSHV is shed with high frequency in the saliva of infected

individuals, particularly while immune suppressed.22 Saliva is con-

sidered the most common route of transmission. Typically, the KSHV

genome copy number in the saliva is considerably lower than that of

EBV or human cytomegalovirus (HCMV), which also are transmitted

by the oral route. This may explain the more limited transmission of

KSHV in the general adult population compared to populations where

saliva contact is more extensive, such as mother‐to‐child transmission

and transmission among MSM.23–25

The multiple types of KS are summarized in Table 1.

(i) Classic KS is a disease of older men around the Mediterranean

basin and Saudi Arabia. Classic KS is independent of HIV infection and

is concentrated in regions with a population prevalence of KSHV of

4%−9%.26,27 Disease emergence of classic KS is age‐related, perhaps a

sign of immune senescence, although no immune biomarker has been

identified that correlates with classic KS or can predict it. KSHV

serology is not currently used as a screening tool for KS risk. Recent

reports document cases of KS in younger HIV‐negative gay men, often

localized to the foot,28–30 which would be consistent with the high

KSHV transmission rate in this population. One could speculate that

pre‐exposure prophylaxis for HIV (Prep) without physical barriers does

not protect against KSHV transmission.

(ii) Endemic KS is seen among the Kazakh and Uyghur ethnicities

in Xinjiang (China) and in Eastern Africa (Kenia, Uganda, Malawi,

Zambia, South Africa, and Tanzania). Pockets of high KSHV

seroprevalence have also been reported in Amerindians.31–33 In

Eastern Africa, KS is the most common cancer in adult men and is also

observed in children. Among the Uyghur, KSHV has also been

associated with osteosarcoma, in addition to KS.34 In endemic

regions, the KSHV seroprevalence exceeds 50%, and seroconversion

takes place before puberty, that is, mother‐to‐child or intra‐family

transmission is the predominant route of infection. Endemic KS is

seen in both HIV‐positive and HIV‐negative persons, old and young,

men as well as women. Preliminary studies suggest that KSHV

acquisition, if not KS disease, is associated with parasite coinfections

in the region.35,36

(iii) Iatrogenic KS is seen in solid organ transplant patients (HIV+

and HIV−), and KSHV may be transmitted by the transplanted organ

itself.37 As expected, the prevalence of transplant KS tracks with both

KSHV population seroprevalence and the number of kidney

transplants in each country, with Italy and Saudi Arabia reporting

the highest number of transplant KS cases.

(iv) AIDS‐KS or epidemic KS was recognized as an AIDS‐defining

condition, next to Pneumocystis pneumonia, cryptococcus disease,

and histoplasmosis.1 It is closely linked to HIV infection because of a

shared pattern of transmission among high‐risk individuals and

because of HIV‐induced immune deficiency. The HIV pandemic

overlaps with different pre‐existing classes of KS. Before

the introduction of effective Prevention‐of‐Mother‐to‐Child‐

Transmission programs for HIV, pediatric HIV‐KS rates were

dramatically higher in KSHV endemic regions.38 Adult HIV‐KS rates

remain elevated in KSHV endemic regions since most PLWH

worldwide reside in areas where KSHV was endemic before the

introduction of HIV. In fact, treatment of HIV with cART sometimes

leads to a flare‐up of KS, a phenomenon termed Kaposi sarcoma

immune reconstitution syndrome, which can be alleviated by

concomitant oral etoposide.39

Lastly, there are familial cases of KS. Here a person or family with

inborn immune deficiency becomes exposed to KSHV and develops

KS. KS has been reported in a person with Wescott−Aldrich

syndrome as well as in persons carrying mutations in the STIM1,

the gene encoding stromal interaction molecule 1, OX40, the

costimulatory receptor expressed on activated T cells. MAGT1,

STAT4, WAS, IFNGR1, and TNFRSF4 have been associated with KS

as well.40–47 These are examples of genes where a single mutation

can dramatically increase susceptibility to KSHV acquisition, KSHV

reactivation, or KS disease. One would expect many more, less

penetrant alleles to segregate in the population (reviewed in48).

All types of KS are treated primarily with cytotoxic chemo-

therapy, mainly using a regimen developed for terminal AIDS‐KS

before cART was invented.49,50 In low‐ and middle‐income countries

(LMIC) where pegylated liposomal doxorubicin is not affordable in the

public sector, free doxorubicin drug, vincristine, or paclitaxel are

used.51 Newer experimental approaches are discussed below.

Ganciclovir is active against replicating virus but there currently is

no cure for KSHV latent infection and no vaccine against KSHV.

The most significant barrier to understanding KS and developing

targeted KS therapies is the absence of small animal models for this

tumor or even representative cell culture models. To this day, no one

has successfully adapted KS tumor‐derived cells to permanent growth in

culture. This was not for lack of trying.52–54 KS‐derived explant cultures

TABLE 1 Multiple manifestations of Kaposi sarcoma.

Form Age in years HIV Location

Classic ≥60 − Italy, Turkey, Saudi Arabia

Endemic 0−16, ≥60 − Africa, Xinjiang (China)

Iatrogenic ≥60 − Global

AIDS (epidemic) 16−60 + US, Europe, Africa

Pediatric‐HIV 0−16 + Africa

Endemic‐HIV 0−60 + Africa

KS‐IRIS 0−60 + Global

Long‐term cART ≥60 + Global

Iatrogenic‐HIV ≥60 + Global

KICS 0−16 + Global

Abbreviations: AIDS, acquired immune deficiency syndrome; cART,
combination antiretroviral therapy; HIV, human immunodeficiency;
KS, Kaposi sarcoma; KS‐IRIS, Kaposi sarcoma immune reconstitution

syndrome.
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and KSHV‐infected primary endothelial cells lose the viral genome in cell

culture unless the viral episome is under strong selection, such as

provided by a selectable marker or the particular genetic makeup

of PEL.55–59 PEL, unlike KS, has numerous genetic abnormalities, some

of which, such as mutations in p53,60 were selected in response to

chemotherapy, while others precede therapy. Most PEL also carries

EBV.61 One could speculate that the PEL somatic mutations evolved in

the presence of the latent KSHV genome, thus influencing KSHV

maintenance, which is required for PEL survival.

From a clinical point of view, the disease manifestation of KS has

not changed much since its initial discovery, and the treatment

options have not advanced since the introduction of pegylated

liposomal doxorubicin. One could argue, therefore, that KS is the

same disease as it always was, only the circumstances under which

the disease manifests have changed. AIDS‐KS has become rarer in

the United States and Europe as cART has become readily available,

and cancer diagnosis and therapy are accessible to most of the

population. KSHV is firmly entrenched in vulnerable populations

independent of HIV, and KS is now seen at a younger age. In Sub‐

Saharan Africa, where most PLWH and most people living with KSHV

reside, KS remains prevalent in the general population, and optimal

therapy in the form of pegylated liposomal doxorubicin remain

unavailable to most patients.

3 | HISTOPATHOLOGY OF KS

KS is a tumor of dedifferentiated or transdifferentiated endothelial

cells. This lineage description tries to coalesce several competing

interpretations of the mature KS tumor cell's nature and lineage of

origin. The diagnosis of KS is based on theWHO definition of KS. The

WHO pathology standard defines KS as “a locally aggressive

endothelial proliferation that usually presents with cutaneous lesions in

the form of multiple patches, plaques, or nodules, but it may also involve

mucosal sites, lymph nodes, and visceral organs. KS is uniformly

associated with HHV8 infection, and it represents an example of virus‐

induced vascular proliferation.” The WHO uses the presence of KSHV

as the sole defining diagnostic criterium for KS.

Positivity for the KSHV genome or a KSHV protein encoded by the

virus distinguishes KS from histologically similar, KSHV‐negative lesions,

such as angiosarcomas.62,63 The detection of KSHV DNA in KS lesions

proved the association between this virus and this tumor beyond a

reasonable doubt.64 It provided the basis for a new approach to KS

diagnosis in LMIC.65 The standard for establishing the presence of

KSHV in a tumor lesion is immune histochemistry for the KSHV open‐

reading frame 73 protein, the so‐called latency‐associated nuclear

antigen (LANA, LNA, or LANA‐1).66–68 No other marker protein has

been accepted for the clinical diagnosis of KS. No KS lesion has been

described that would carry the viral genome but not express LANA. The

LANA promoter is constitutively active in all cell types tested, and LANA

is the only mRNA observed in every KSHV‐infected cell.69,70

Below we expand on two aspects of the WHO definition: the

complexity of KSHV transcription in KS and the putative cell types

associated with KSHV lesions. The genomic locus for LANA/ORF73

encompasses a series of genes: LANA, vCyc/ORF72, and vFLIP/

ORF71. A single leftward transcript originating upstream of the LANA

ORF covers the entire region. The vCyc protein is expressed by

alternative splicing and from an internal promoter.71 The vFlip

protein is expressed by an internal ribosome entry site on the vCyc‐

vFlip message.72 A common proximal 3’‐poly adenylation site is used

for the transcripts encoding these three proteins; however, a

population of transcripts extends further and terminates after the

Kaposin/K12 gene. The Kaposin transcript represents the most

common mRNA in KS tumors. The large intron of major latency

transcript encodes the KSHV micro RNAs (miRNAs),73–75 except

miR‐K10a, encoded within the Kaposin ORF.76 The LANA transcript

has been observed by in situ hybridization in KS tumors77 and KSHV

miRNAs have been found in KS tumors and PEL.78

There exists considerable heterogeneity of viral transcription

across and within KS lesions.15,79–83 Every KS tumor transcribes the

KSHV latency locus, and every KS tumor cell within a clinical lesion

expresses the LANA protein. This correlation has biological plausibil-

ity since LANA is necessary and sufficient to maintain the KSHV

plasmid within the nucleus of any infected cell.55,84–86 Consistent

with this ubiquitous expression pattern, the latency locus is free of

repressive chromatin at all times.87–90 On top of this minimal

transcriptional state, which we term “tight latency” or latency I

analogous to EBV, there exists a gradient of transcription patterns.

These tight latency genes have been demonstrated in individual

cells, in all KSHV‐associated diseases, and all individual KS lesions.

Additional genes are often transcribed in KS and KSHV‐associated

diseases as well. The data here are less complete and often limited by

a lack of reagents. The antibody reagents to the LANA repeat region

are more specific and sensitive than any other antibody against

KSHV; however, the absence of evidence should not be taken as

evidence of absence. In PEL, the LANA‐2/vIRF3 locus is consistently

transcribed; the LANA‐2/vIRF‐3 protein is expressed—perhaps also

vIRF1 and other genes in this locus. The region around the two lytic

origins of replication also seems transcribed under an expanded set

of conditions. This includes the viral IL‐6 protein, which is typically for

MCD.91,92 Recent single‐cell and tumor profiling data suggest the

existence of additional actively transcribed regions on the genome in

KS and PEL,14,15,70 a semistable state that we describe as “extended

latency” or latency II. These include, for instance, the nut‐1 nuclear

transcript.77 In addition, the K15 transcript is detectable in PEL, and

the K15 protein has been detected in many KS lesions.93 K15 is

located on the right‐hand side of the genome. It is variable and

differentially spliced, making the RNA difficult to detect.94,95

Lastly, about one‐third of KS lesions harbor transcripts across the

entire viral genome.14 We call this state “lytic.” These three prototypical

patterns are observed in any set of KS biopsies and any collection of

KSHV‐infected cells with some variations. The clinical significance of

these different transcription patterns is unknown. Still, differential viral

transcription and the different cellular compositions of individual KS

lesions may explain the clinical observation that not all skin KS lesions in

patients on systemic therapy and cART respond equally.
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Another feature of KSHV is worth mentioning in this context. All

KSHV miRNAs have been observed in circulating extracellular vesicles

(EVs) or exosomes isolated from tissue culture supernatant, from KS

patients, in the context of viral infection, and from cells that ectopically

expressed only the KSHV miRNAs.96 Detecting the viral miRNAs in EVs

or the linear, encapsulated viral genome in plasma thus constitutes a

biomarker for KSHV infection. Because EV‐encased miRNAs can travel

independently of the virus and are not restricted by virus‐specific entry

receptors, they can induce “KS‐like” phenotypes in uninfected

endothelial cells.97,98 This series of experiments independently con-

firmed that much of the lineage reprogramming induced by KSHV can

be attributed to the KSHV miRNAs, most likely in conjunction with

paracrine host factors, such as Platelet‐derived growth factor

(PDGF).98,99 This phenotype thus increases the heterogeneity of the

KS lesion even further. Every KS lesion is an unstable mixture of cells

infected with KSHV, not infected with KSHV but reprogramed by EV‐

transduced KSHV miRNAs, or neither infected with the virus nor

carrying the viral miRNAs but exposed to soluble paracrine factors,

notably vIL6, IL6, vascular endothelial cell growth factor (VEGF), and

PDGF. KS heterogeneity is indistinguishable by morphology.63,100–102

Pathologists distinguish patch, plaque, and nodular lesions chiefly

based on the degree of spindle cell nests in a section and

neoangiogenesis.103,104 Confusingly, the same terms are also general

dermatology terms and have been used to describe the gross

appearance of KS skin lesions. In other contexts, the terms flat, raised,

and nodular are used to describe KS skin lesions.105 In response to

systemic cytotoxic chemotherapy lesions tend to flatten before they

disappear. As noted above, not all skin lesions on a patient respond

equally to standard therapy, and not all patients respond. This

inconsistent behavior may be due to the cellular and molecular

heterogeneity among KS lesions in the same patient. In KS complete

responses are rare; partial responses and stable disease represent the

most commonly observed outcome, particularly in KSHV‐endemic

regions.51,106,107 At times these response classifications are subject to

observer bias. Detailed studies of how the overt clinical appearance

corresponds to histopathology are missing. The molecular and clinical

heterogeneity of KS lesions has foiled clinical trials for multiple targeted

agents. Multiple agents such as the VEGF‐1 inhibitor Bevacizumab, the

mTOR inhibitor sirolimus/rapamycin,108,109 and receptor‐tyrosine kinase

inhibitors, such as Imatinib and sorafenib110–112 show significant

efficacy as single agents in small trials for some patients. Still, it is

unclear why the other KS patients do not respond. Our lack of a precise

understanding of the molecular, histopathological, immune components,

and clinical heterogeneity of KS severely hampers the development of

rational and targeted therapies.

4 | THE LINEAGE OF THE KS
TUMOR CELL

Although theWHO has classified KS as an “endothelial proliferation,” it

has not endorsed any particular histochemical lineage markers for KS

diagnosis. Sarcoma biomarkers and endothelial and mesenchymal

lineage markers have all been observed in KS lesions. This led to

considerable confusion in the field but has not yielded clinically

actionable insights.10 Experimental studies with the KSHV virus in

culture added to this mélange of observations. It is essential to keep

these two lines of evidence, observations in clinical lesions and

experimental infections, separate.

Hong et al.113 and Wang et al.114 reported the first host

transcriptional profile of KS lesions. These studies and others 102

support the notion that KS is a tumor of endothelial cell lineage, but

not just composed of canonical endothelial cells. This sentiment is

confirmed by immune histochemistry. KS lesions stain positive for

lymphatic endothelial cell lineage markers, such as lymphatic vessel

endothelial receptor 1 (Lyve‐1), VEGFR3, and Podoplanin, van

Willebrand factor, CD31/PECAM‐1, CD34. Prox1 and VEGFR3 are

perhaps the most specific markers, as they are typically expressed

only on lymphatic and not blood endothelial cells.115 In KS lesions,

LANA‐positive cells express VEGFR3 (as do some LANA‐negative

cells).116 Because KS is highly vascularized, and most lesions undergo

active angiogenesis and vessel remodeling, it is difficult to decide for

each cell whether it originated from the nest of KS tumor cells (and

perhaps lost the virus as it differentiated) or migrated into the lesions

as a CD34+/CD31+ circulating endothelial cell precursor cells and

then became KSHV‐infected and reprogrammed within the KS

microenvironment.117 In KS, unlike any other tumor, there is no

distinction between the tumor neovasculature and the tumor itself.

Differentiated endothelial cell markers are not the only ones

expressed in KS lesions. Gill and colleagues118 noted that the Notch

isotype expression in KS does not match “normal,” that is, fully

differentiated endothelial cells. In culture, KSHV can induce Notch

and endothelial‐to‐mesenchymal transition.119,120 This observation

prompted research into inhibiting IC‐Notch signaling in KSHV

diseases. Unfortunately, the most clinically developed candidate

had an unacceptable safety profile. Other markers, such as PDGFRA,

have been described in KS or KSHV‐infected cells typically associated

with mesenchymal lineage or mesenchymal stem cells.99,121,122 This

is expected as “nests” of KSHV‐infected tumor cells are embedded in

a matrix of stromal cells. Depending on the stage of the particular

lesion—patch, plaque, nodular‐stromal cells, or even immune cells

may make up most of the lesion.

Infection of purified cell populations with KSHV in culture has

generated evidence supporting multiple scenarios. KSHV can infect

and persist in multiple cell types, perhaps more efficiently in stem

cells but also in HEK293 epithelial cancer cells.117,123,124 In pure

culture, infection with KSHV can differentiate precursor cells into

lymphatic endothelial cells and transdifferentiate blood endothelial

cells (HUVEC) into lymphatic endothelial cells and vice

versa.113,114,125 The endothelial lineage markers PROX1 and

SOX18 have roles in the KSHV life cycle.126 It was also reported

that KSHV could differentiate primitive mesenchymal cells into

endothelial cells.127 These culture experiments reinforce the “chicken

and egg” problem regarding the trans‐differentiation of precursors

into more differentiated cells or vice versa. Does KSHV infect

mesenchymal stem cells and induce the extraordinary expression of
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some endothelial markers, or does KSHV infect mature endothelial

cells and dedifferentiate them into more primitive precursors,

common ancestors of the mesenchymal/endothelial cell lineage?

The in‐culture infection experiments suggest that both directions are

possible, and that the virus is apt at generating the perfect cellular

environment for persistence.

Individual KSHV viral genes, such as K1, vIL6, and vGPCR, in

isolation, can dedifferentiate, transdifferentiate and, in rodent

systems, fully transform mature endothelial cells.128–130 The KSHV

miRNAs in isolation also induce trans‐differentiation and hallmarks of

transformation.76,78,97,98,131,132 In culture, KSHV can transform both

endothelial and mesenchymal lineage precursors, as well as experi-

mental cell models, to the point that they form tumors as xenografts

in immune‐deficient mice.102,124,133–136 These experiments support

the classification of KSHV as a bona fide human tumor virus;

however, tissue culture systems, by design, are finely tuned to

respond to pro‐growth signals with drastic changes in cell pheno-

types. Some, such as NIH3T3 cells, were evolved to score a single hit

(mtP53) or dual hit (Myc and mtRas) oncogenes. In culture, both

overexpression and mutational activation of single proteins induce

transformation. This has been demonstrated for Myc, Ras/h‐Ras,

GPCR/vGPCR, huIL6/vIL6, and members of the PI3k/mTOR path-

way.137 Myc is the prime example as either amplification, trans-

location, stabilization, or mutation induces similar phenotypes in

susceptible experimental systems and is found in tumors.58,138,139

The question is not which pathway is more important but which

constellation of pathways is active in a particular KS lesion and how it

can be targeted therapeutically.

5 | KSHV VIRAL LOAD AS A DIAGNOSTIC
MARKER

Oncogenic viruses cause about one‐fifth of all cancers worldwide.

These viruses are present in all tumor cells, and viral genes (proteins

and miRNAs) drive the hallmarks of cancer.140 One would think,

therefore, that viral load measurements constitute a biomarker for

viral cancers. This is indeed the case for HPV‐associated cervical

cancer, where the persistence of viral DNA copies of the high‐risk

types has become the primary screening tool for preventing the

disease. Detecting high‐risk HPV is a clinically proven predictive

biomarker for cervical cancer and a prognostic marker in HPV‐

positive oropharyngeal cancer.141 Likewise, viral load is an estab-

lished measure for most acute viral diseases. In HIV‐infected patients,

viral genome copy number is the sole determinant of clinical

intervention, that is, cART initiation. Increases in circulating HCMV

are the clinically actionable measure to start and stop antiviral

therapy in transplant patients. In HCMV, viral load is measured either

by genome copy number measured by QPCR or leukocyte

antigenemia measured by pp65 levels.142 Viral load is routinely

measured in nasal swabs for respiratory viruses. The COVID‐19

pandemic has broadly demonstrated the utility of virus detection in

directing public health interventions and initiating antiviral therapy.

In sum, a solid body of precedence supports the utility of viral loads

as predictive and prognostic biomarkers in any viral disease.

The situation regarding KS is more complicated (reviewed in6).

Every KS tumor cell carries one or more copies of the KSHV genome

and expresses some viral proteins and all viral miRNAs. The presence

of KSHV DNA in KS biopsies is under consideration for a rapid field

test in KS endemic areas.65 Likewise, detecting the EBV EBER small

noncoding RNAs constitutes the gold standard for diagnosing EBV

lymphoma.143 Yet, herpesvirus loads in plasma or saliva do not have

broadly prognostic or predictive power. The problem with using

KSHV viral load measurements in blood as biomarkers for cancer is

that even cancer‐free people have circulating virus in their blood and

saliva. Genome positivity for any herpesvirus in blood or saliva is a

measure of infection, not an imminent disease as most herpesviruses

are shed asymptomatically for life.

There have been many attempts to demonstrate a correlation

between KSHV systemic copy number and KS.144 Reviewing these

efforts highlight both difficulties and opportunities. There are three

sources of viral DNA in circulation: (i) inside healthy, circulating

latently infected cells, (ii) inside infectious virions and noninfectious,

sometimes called interfering, particles, and (iii) as part of naked

circulating tumor DNA released by the lysis of tumor cells or

reactivating latently infected normal cells. These need to be

distinguished when testing for clinical associations.

Healthy‐latently infected cells characterize the KSHV latent

reservoir in normal individuals.145 We have studied the utility of the

KSHV miRNAs as a marker for latent infection and tumor load.96

Unlike viral DNA, the KSHV miRNA levels do not change markedly

during viral reactivation, except for miRNA K12‐11. The viral miRNAs

are constantly transcribed and processed from the KSHV latency

transcript. The mature, correctly processed viral miRNAs are excreted

into circulation. Therefore, the viral miRNAs are protected from

RNAses. KSHV miRNA levels in blood correlated with tumor burden

and the number of healthy, latently infected cells. As of yet, neither

approach has entered clinical practice. Developing KSHV viral load

measurements in blood represent a diagnostic opportunity for rapid

testing and monitoring of therapy response that has not been

realized.

6 | VIRUS− IMMUNE INTERACTIONS

Innate immunity is the first line of defense against invading

pathogens. Pathogen‐associated molecular patterns (PAMPs) on

incoming microbes are detected by pathogen recognition receptors

(PRRs). Activation of PRRs triggers signal transduction pathways,

resulting in the production of interferon and inflammatory cyto-

kines.146 The KSHV genome encodes many immunomodulatory

proteins that prevent antiviral responses from PRRs.147,148 This

immunomodulation allows viral persistence in the host149 and is

reviewed here.

First, toll‐like receptors are PRRs that detect incoming

microbes in endosomes (TLR3/7/8/9) or on the plasma membrane
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(TLR1/2/4/5/6/10).150 Infection with KSHV activates TLR3,151 but

TLR3‐mediated interferon induction is diminished by KSHV viral

interferon regulatory factors.152 The KSHV lytic switch protein, RTA,

promotes the degradation of the TLR3 adapter protein, TRIF,153 and

also suppresses gene expression of Myeloid differentiation primary

response 88 (MyD88), TLR4 adapter protein.154

Second, the nucleotide‐binding oligomerization domain‐like recep-

tors (NOD‐like receptors, or NLRs) are present in the cytoplasm and can

also recognize PAMPs. Some NLRs are components of inflammasomes,

which upon activation, induce the production of inflammatory cytokines

such as IL‐1 or IL‐18.150 While the early lytic protein, KSHV ORF45,

activates the NLRP1 inflammasome, the tegument protein, KSHV

ORF63, can inhibit NLR proteins.155,156 Retinoic acid‐inducible gene I

(RIG‐I)‐like receptors (RLRs) have traditionally been considered RNA

sensors but can also detect DNA viruses like KSHV.150,157–160 RIG‐I is

suppressed by the KSHV deubiquitinase ORF64, which prevents RIG‐I

ubiquitination and activation.161

Third, KSHV inhibits cytosolic DNA sensing pathways, including

the cGAS‐STING pathway. STING on the ER membrane is bound and

activated by the cyclic GMP‐AMP (cGAMP) generated by activated

cGAS. KSHV ORF52 binds to cGAS and prevents the synthesis of

cGAMP.162 Additionally, LANA binds cGAS, preventing TBK1 from

being activated,163 and vIRF1 binds to STING and prevents TBK1

recruitment.164 In lay terms, an intricate battle ensues with each

infection event between the virus and the cell's innate host response.

KS is an outcome where the virus wins this battle. We do not know if

that represents the majority or a small minority of infection events.

We do not know which other factors are involved, but some

interchanges are governed by inborn defects and polymorphisms in

the human population.41,42,45

KSHV modulates cell‐mediated immunity. Natural killer (NK)

cells, T cells, dendritic cells, and macrophages scour the host for

pathogens. Many of these immune cells are capable of identifying

and killing virus‐infected cells. However, KSHV encodes counter-

measures. Many KSHV proteins inhibit NK‐ or T‐cell‐mediated killing.

For example, the viral ubiquitin ligase KSHV K3 promotes the

degradation of MHC‐I, CD1d, CD31, and IFN‐R1, which prevents

CD8+ T lymphocytes from becoming activated and recognizing

infected cells. Another viral ubiquitin ligase, KSHV K5, also induces

degradation of MHC‐I, CD54, B7‐2, CD1d, MICA, and MICB, thereby

impairing CD8+ T cell and NK cell activity.165 In addition, MICB

expression is downregulated by the KSHV microRNA miR‐K12‐7.166

KSHV also subverts CD4+ T cell‐mediated immunity. KSHV RTA

upregulates an MHC‐II antagonist, that is, membrane‐associated

RING‐CH (MARCH8), while promoting the proteasomal degradation

of MHC‐II.167 Autophagy is necessary for MHC‐II antigen display, but

viral B‐cell leukemia/lymphoma 2 (vBcl2) prevents it.168 In addition,

IFN and class II MHC transactivator (CIITA) is downregulated by

vIRF3, which reduces MHC‐II presentation.169 KSHV LANA binds to

the CIITA promoter and prevents IRF4 from activating it, which

reduces MHC‐II expression.170

The cell‐extrinsic effects of KSHV on the immune system are, in

part, mediated by secreted viral proteins. KSHV encodes three

cellular chemokine viral homologs, vCCL1 to 3 (also known as vMIP‐I

to III).149 vCCL3 preferentially stimulates chemotaxis in Th2 cells

compared to Th1 cells, indicating that viral chemokines may

contribute to developing the KS microenvironment's distinctively

Th2‐skewed milieu.171 vCCL2 binds to CX3C chemokine receptor 1

(CX3CR1) and CCR5, suppressing the natural ligands of these

receptors and preventing the migration of NK cells.172 vCCL2 also

induces CCR3 and CCR8 expression to attract Th2 cells to KS lesions,

while inhibiting CCR1 and CCR5 activation.171 In addition, KSHV

encodes an IL‐6 viral homolog (vIL‐6). vIL‐6 signals through gp130

dimers, whereas IL‐6 requires IL‐6R and gp130 for signaling.173 Both

cytokines activate Janus kinase (JAK)‐STAT signaling, primarily

through STAT3, which is linked to angiogenesis, migration, differen-

tiation, and cell proliferation.174,175 The vIL‐6 promotes increased IL‐

6 release, which increases B cell proliferation and causes flare‐ups of

MCD or KS/PEL.176 The survival and proliferation of PEL cells are

aided by low levels of latent vIL‐6 expression.177 It has been

demonstrated that vIL‐6 increases the enzyme activation‐induced

cytidine deaminase production in activated B cells, which increases

the rate of class‐switch recombination.178

7 | IMMUNE TARGETING THERAPIES FOR
KS AND KSHV‐ASSOCIATED DISEASES

Some label the 21st century as the century when cancer research

learned how to appropriate the immune system for cancer therapy.

KS and KSHV‐associated cancers represent perfect targets, as the

viral proteins are considered non‐self, and KS and KSHV heavily

depend on the tumor and immune microenvironment. After all,

transplant KS resolves in response to a reduction in immune

suppressive dose and a significant fraction of limited KS resolves

after HIV‐associated immune deficiency is overcome by cART

(eventually, the KS returns in both scenarios).

Anti‐IL‐6 antibodies were first tested as a therapy for idiopathic

MCD, which is known to express significant amounts of human IL‐6.

Siltuximab, an anti‐IL‐6 antibody, was effective against KSHV‐associated

MCD.179 Tocilizumab, an anti‐IL‐6R antibody, was tested in a small cohort

of KSHV‐associated MCD patients and was found to show activity.180

Programmed death ligand 1 (PD‐L1) is an inhibitory molecule

overexpressed on many different tumor types. PD‐L1 binds to its

receptor, programmed cell death protein 1 (PD1), to suppress

immune responses. Increased PD‐L1 expression in monocytes

induced by KSHV infection may help KSHV evade the immune

system.181 PD1 is persistently increased in NK cells recovered from

KS patients, indicating an exhausted phenotype.182 Nivolumab and

pembrolizumab are examples of anti‐PD1 antibodies that reduce

tumor size in KS patients harboring HIV183–185 as well as in classic

and endemic KS.186 Pembrolizumab was previously shown to have an

acceptable safety profile in HIV patients with cancer.185

Further studies are ongoing, as it is unclear how these drugs

affect HIV latency.187,188 These include trials investigating intrale-

sional injections of Nivolumab in cutaneous KS (NCT03316274) and
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pembrolizumab in combination with anti‐retroviral therapy in HIV‐

infected individuals with cancer (NCT02595866). Another inhibitory

modulator of T cells is cytotoxic T‐lymphocyte‐associated protein 4

(CTLA‐4).189 Ipilimumab is an anti‐CTLA‐4 antibody and, in combina-

tion with Nivolumab in KS patients, displayed good efficacy.190,191

Pomalidomide and Lenalidomide,2,192,193 both derivatives of

Thalidomide, represent the only new drug class approved for treating

KS in the last 20 years. Pomalidomide was safe and active in KS

patients with and without HIV, with an overall response rate of

71%.194 This led to accelerated approval in the United States of

America. Several more extensive studies are ongoing worldwide

(NCT04577755, NCT02659930, NCT03601806). These will estab-

lish the efficacy of pomalidomide across diverse populations of KS

patients. Their primary target is Cereblon, which is an essential gene

in PEL.195 In addition to its cell intrinsic role in survival, pomalidomide

modulates the immune response at both a cellular and systemic

level.196 Pomalidomide restores B7‐2, ICAM‐1, and MHC1 levels in

latent and lytic PEL cells.197 In addition, this drug also prevents tumor

cells from upregulating PD‐L1.198 It may kill virally infected cells in

the KS lesion directly, render them visible to the adaptive immune

system, or modulate the inflammatory lesion microenvironment to

the point where it can no longer sustain tumor cell proliferation by

intrinsic or paracrine modulators.

In sum, we hope that this review has highlighted that most patients

that develop KS today are nothing like the AIDS‐KS patients that led to

the discovery of KSHV and the formulation of chemotherapy‐based KS

treatments. KS patients today are diverse; they experience KS under

different circumstances and exhibit different but still underdefined

phenotypes of KSHV infection. We lack a clear understanding of what

exactly goes on in the KS lesion microenvironment and which are the

rate‐limiting molecular processes that maintain this cancer. We have no

outcome markers beyond lesion measurements and no predictive or

prognostic molecular tests. The KS and HIV‐KS epidemic cannot be

considered solved; it remains rampant, particularly in LMIC environ-

ments where the best standard of chemotherapy care is not widely

affordable. We are still learning to optimally target KSHV to treat KS

and monitor KSHV to predict KS. Pomalidomide and cART provide a

new oral treatment modality for KS.
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