The interaction between *Plasmodium falciparum* and HIV-1 on the CNS of African children

Charles RJ C Newton

Kenya Medical Research Institute, Kenya

Neurosciences Unit, Institute of Child Health, London, UK
When two elephants collide, beware, for the ground will shake. So it is with HIV and malaria.

Jimmy Whitworth
Outline

- Malaria
 - Epidemiology
 - CNS manifestations
 - Neuro-cognitive sequelae

- HIV
 - Epidemiology in Africa
 - CNS involvement in children
 - CNS involvement in African children

- Interaction between malaria and HIV
 - Pathogen and clinical manifestations
 - Potential CNS effects
Falciparum malaria in Africa

- In 2002
 - 515 million clinical episodes of malaria in the world
 - 70% in Africa
- Mostly in young children
- Kills over 1M children per year
Natural history of infection

Uninfected ↔ Infected 20-40% ↔ Clinical Disease 10% ↔ Severe clinical Complications 1% → Death

- Headaches
- Seizures / Convulsions
- Agitation
- Psychosis
- Impaired consciousness
- Coma
Plasmodium falciparum
Pathology

- Sequestration of schizonts
 - deep vascular beds
 - brain more than other organs
- correlation between clinical severity and pathology can be poor
Cerebral malaria

- Clinical definition
 - Unarousable coma
 - Asexual parasites in peripheral blood
 - Exclusion of other causes
- Diffuse encephalopathy
- Mortality 17-20%
Neurological deficits

- Following cerebral malaria
 - 10.5% have deficits on discharge
- Many improve
 - Ataxia
 - Hemiparesis
 - Cortical blindness
- Some die
 - Quadriparesis
- Others develop
 - Epilepsy
Impairment following malaria

Post CM - 24% had any impairments
 – 42% had ≥ 2 impairments
 – Language and cognitive 13.8%
 – Epilepsy 9.2%
 – Neurological deficits 10.5%

Post M/S - 24% had any impairments
 – 28% had ≥ 2 impairments
 – Language and cognitive 6.7%
 – Epilepsy 11.5%
 – Neurological deficits 8.3%

Carter JA et al JNNP 2005; 76: 476-481
Kilifi Follow up study: Speech and Language

<table>
<thead>
<tr>
<th>Lower estimated scores</th>
<th>CM</th>
<th>M/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptive vocabulary</td>
<td>Lexical semantics</td>
<td>Lexical semantics</td>
</tr>
<tr>
<td>Lexical semantics</td>
<td>Higher level language</td>
<td>Pragmatics</td>
</tr>
<tr>
<td>Higher level language</td>
<td>Pragmatics</td>
<td>Phonology</td>
</tr>
<tr>
<td>Pragmatics</td>
<td>Phonology</td>
<td></td>
</tr>
<tr>
<td>Phonology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word finding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significant difference in mean scores</th>
<th>CM</th>
<th>M/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical semantics</td>
<td>Higher level language</td>
<td>Pragmatics</td>
</tr>
<tr>
<td>Higher level language</td>
<td>Pragmatics</td>
<td>Phonology</td>
</tr>
<tr>
<td>Pragmatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carter JA et al TMIH 2004; 10(1): 3-10
Kilifi Follow up study: Non-verbal, Memory & Behaviour

<table>
<thead>
<tr>
<th>CM</th>
<th>M/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-verbal</td>
<td>Construction task</td>
</tr>
<tr>
<td>Memory</td>
<td>Prospective items</td>
</tr>
<tr>
<td></td>
<td>Orientation</td>
</tr>
<tr>
<td>Behaviour</td>
<td>Habits</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carter JA et al. TMIH 2004; 10(1): 3-10
Neurological deficits

Based upon 6 studies across Africa persistent (> 6 months) motor deficits

<table>
<thead>
<tr>
<th>Deficit</th>
<th>On discharge (%)</th>
<th>Long-term residual (%)</th>
<th>Events 0-15 years p.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiparesis</td>
<td>2.5</td>
<td>0.6</td>
<td>360-400</td>
</tr>
<tr>
<td>Quadriparesis/Severe deficit</td>
<td>4.1</td>
<td>1.3</td>
<td>770-860</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>1.9</td>
<td>1.1</td>
<td>650-730</td>
</tr>
<tr>
<td>Visual Impairment</td>
<td>2.3</td>
<td>0.5</td>
<td>300-330</td>
</tr>
<tr>
<td>Behavioral difficulties</td>
<td>1.3</td>
<td>2.6*</td>
<td>1,540-1,720</td>
</tr>
<tr>
<td>Language deficits</td>
<td>1</td>
<td>11.8*</td>
<td>7,000-7,800</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>0.8</td>
<td>4.6*</td>
<td>2,700-3,000</td>
</tr>
</tbody>
</table>

Snow RW et al DCCP 2004
Sequelae following malaria

Uninfected ← Infected ← Seizures ← Impaired consciousness → Cerebral malaria

Epilepsy \[\text{Cognitive impairment}\] \[\text{Neurological deficits}\]
Epidemiology of HIV in African Children

- In 2001 ~2.2 M children infected
- Acquired infection
 - Mother (>95%)
 - Blood transfusions
 - Contaminated needles
 - Sexual
Maternal Transmission

Cumulative 40%

- Breast-feeding
 - 10-20%
 - Accounts for >40% of the transmission overall

- At birth
 - 10-20%

- In utero
 - 5-10%
Prognosis for Children

Of those infected

- 35% die by 1 year
- 52% die by 2 years
- Mortality higher in
 - East and West Africa
 - Early infections
 - Maternal deaths
 - Maternal CD4 counts < 200
 - Infant infection

Mortality likely to be greater in those not in the trials.

CNS involvement in children

Encephalopathy

- Developmental arrest
- Loss of developmental milestones
- Impaired brain growth
- Impaired motor function
- Impaired expressive language
- Movement disorders
Secondary effects

- CNS infections
 - Other viruses eg CMV, Human Herpes
 - Bacterial
 - Cryptococcal
 - Toxoplasmosis
 - TB
- Stroke
- Tumours
- Seizures
CNS involvement in children

- More commonly involved than adults
- More progressive than adults
- Early infection and greater viral load leads to more severe encephalopathy
- Early impairment of growth predicts developmental delay
Pathological differences

<table>
<thead>
<tr>
<th></th>
<th>African (n=70)</th>
<th>North American (n=156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of death median months</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>CNS pathology</td>
<td>93%</td>
<td>96%</td>
</tr>
<tr>
<td>HIV encephalitis</td>
<td>6%</td>
<td>38%</td>
</tr>
<tr>
<td>Lymphocytic meningitis</td>
<td>34%</td>
<td>Not described</td>
</tr>
<tr>
<td>Other CNS infections</td>
<td>9%</td>
<td>10%</td>
</tr>
<tr>
<td>Basal ganglia</td>
<td>41%</td>
<td>65%</td>
</tr>
<tr>
<td>CNS lymphoma</td>
<td>0</td>
<td>5%</td>
</tr>
</tbody>
</table>

Bell et al. J Neuropath Exp Neurol 1997;
HIV-1 infections in Africa

- Brains of HIV-1 infected children
 - Smaller despite lack of HIV encephalitis
- Would suggest that other factors are responsible
 - Nutritional status
 - Other CNS infections
 - Maternal factors
- Malaria only in 3%
Neurological abnormalities in African children

- 15-40% have neurological abnormalities
- Motor most common
- Progressive encephalopathy relatively rare
Neuro-developmental abnormalities in African children

- 3 studies
- Developmental delay can be detected under 2 years
- Motor delay most common
- Impairment of mental processing in some studies
- None examined the effect of confounding factors
 - Nutrition
 - Other CNS infections
Interaction between HIV and falciparum malaria

HIV-1 infection
- Impairs function of T and B cells
- Pregnant women
 - Peripheral and placenta malaria
- Non-pregnant adults
 - Malaria and clinical disease
- Children
 - Malaria and severe disease

P. Falciparum
- Immunosuppression
- Pregnant women
 - Doubling of viral load
- Non-pregnant adults
 - Acute disease 7x viral load
- Children
 - ?
Summary

- HIV-1 infection in African children
 - Most acquired after or at birth
 - Co-morbidity in Africa
 - High and early mortality
- Differences in African children compared to Western children
- Associated with increase severity of malaria
Areas for further research

- Does HIV-1 infection aggravate neuro-cognitive sequelae following severe malaria?
- Would prevention of malaria during infancy improve neuro-development in HIV-1 infected children?
- Would better nutritional supplements improve the development of HIV-1 infected children?
- What are the indications for ARVs in this population?
Acknowledgements

Kenya
- Sadik Mithwani
- Amina Abubakar
- Eduard Saunders
- Chi Eziefula
- Penny Holding
- Michael Kihara
- Victor Mung’ala-Odera
- Dorothy Mbori-Ngacha
- Kevin Marsh

USA
- Shaffiq Essajee
- Alessandro Di Rocco

UK
- Julie Carter
- Robert Surtees
- Brian Neville