Sialoadhesin Expression on Monocytes Enhances HIV-1 Infectivity

Lynn Pulliam MS, PhD
Professor, Departments of Laboratory Medicine and Medicine
University of California, San Francisco
Veterans Affairs Medical Center, San Francisco, CA
April 16, 2007

Funded by NIMH
Why we use the M/MØ to study/predict HAD?

- Activation state of the M/MØ may predict risk of HAD
- Activation state of the M/MØ gives us an idea of the subjects response to HIV infection or therapy
- M/MØ traffic into the brain - Kim et al 2005, 2006
- M/MØ subsets (CD14/CD69) and soluble factors correlate with HAD - Pulliam 2004
Using gene microarrays to characterize monocyte activation
Whole blood (CPT tube) → centrifugation → Serum, Percoll, RBC → Percoll gradient enrichment → PBMC → Magnetic beads purification → CD14+ monocytes → RNA isolation → Raw data → Data processing → Amplification and labeling → Codelink Hybridization → Array scanning
Gene Ontology
HVL vs LVL
(confirmed by RT-PCR and IHC)

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Fold change</th>
<th>p</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotaxis genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>4.2</td>
<td>< 0.01</td>
<td>chemokine ligand 2</td>
</tr>
<tr>
<td>CCR5</td>
<td>2.5</td>
<td>< 0.01</td>
<td>chemokine receptor 5</td>
</tr>
<tr>
<td>Response to stress genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN (CD169)</td>
<td>3.8</td>
<td>< 0.01</td>
<td>sialoadhesin</td>
</tr>
<tr>
<td>Inflammatory response genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>4.2</td>
<td>< 0.01</td>
<td>chemokine ligand 2</td>
</tr>
<tr>
<td>SN (CD169)</td>
<td>3.8</td>
<td>< 0.01</td>
<td>sialoadhesin</td>
</tr>
<tr>
<td>CCR5</td>
<td>2.5</td>
<td>< 0.01</td>
<td>chemokine receptor 5</td>
</tr>
<tr>
<td>CD16</td>
<td>1.5</td>
<td>0.07</td>
<td>receptor for Fc fragment of IgG</td>
</tr>
<tr>
<td>Interferon-induced genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 genes</td>
<td>31.2</td>
<td>< 0.01</td>
<td></td>
</tr>
</tbody>
</table>

Pulliam, Sun, Rempel, J Neuroimmunology 2004 (13 HVL/10 LVL)
Hybrid monocyte/macrophage phenotype in HVL HIV infection
(determined by gene microarrays)

<table>
<thead>
<tr>
<th>Marker</th>
<th>Monocyte</th>
<th>Macrophage</th>
<th>HIV mono</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD16</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CCR5</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MCP-1</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sn (CD169)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IL-1β</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>IL-6</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>TNFα</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Pulliam, Sun, Rempel, *J Neuroimmunology* 2004
What does sialoadhesin do and what, if any, is the affect on HIV infection?
Sialoadhesin (Sn)/CD169

- Sn is the prototypic member of the Siglec family
- Sialic acid binding receptor (not phagocytic) present on subsets of macrophages (BM, spleen, lymph nodes), not on monocytes or microglia
- Associated with adhesion, chemotaxis and chronic inflammation
- Sn expression found on infiltrating macrophages in rheumatoid arthritis Hartnell 2001
- Stimulated by glucocorticoids, TNFα and IFNδ in vitro Crocker 2001
- Sn-expressing macrophages found associated with AIDS-KS biopsies Cornelissen 2003
- Sn elevated in early HIV-1 infection despite HAART van der Kuyl 2007
Protein structure of Sn

C2-set region

sialic acid binding

cell membrane
Sn Expression
Patient Data

• CD14+ monocytes bead isolated
• 15 LVL (<10,000); all on HAART
• 10 HVL (>10,000); all on HAART
• 5 HIV seronegative controls
• Flow cytometry with mAb to Sn binding region
Sn expression correlates with viral load

**p < 0.001
*p < 0.02

x = 175
x = 253
x = 427

**p < 0.001
*p < 0.02
Sn expression *in vitro*

Sn-expressing cell line

- Cloned the Sn gene by PCR
- Transduced THP-1 cell line
- Clonal selection of Sn-expressing cells
- Isolated high Sn expresser
- Produced stable Sn-expressing THP-1 cells (TSn)
Sn expressed on THP-1 cells (TSn)

Western blot

Flow cytometry

TSn THP-1 Mono HVL Mono control Size Marker

kDa

Cells

Intensity
What induces Sn expression *in vivo*?

- IFN-γ and TNF-α induce Sn expression on macrophages *in vitro* - Hartnell et al, 2001

- Microarray data identified IFN - induced genes in monocytes from subjects with HVL - Pulliam et al, 2004
Interferon-induced genes

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Fold LVL(^a) vs C(^b)</th>
<th>Fold HVL(^c) vs LVL(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon-(\alpha) induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFI27</td>
<td>3.9</td>
<td>166.5**</td>
</tr>
<tr>
<td>MX1</td>
<td>1.5</td>
<td>5.3**</td>
</tr>
<tr>
<td>IFIT3</td>
<td>1.4</td>
<td>4.8**</td>
</tr>
<tr>
<td>IFI44</td>
<td>1.8</td>
<td>3.7**</td>
</tr>
<tr>
<td>IFIH1</td>
<td>1.0</td>
<td>3.0**</td>
</tr>
<tr>
<td>G1P3</td>
<td>1.7*</td>
<td>2.4**</td>
</tr>
<tr>
<td>ISGF3G</td>
<td>1.4</td>
<td>1.5*</td>
</tr>
<tr>
<td>Interferon-(\gamma) induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP1</td>
<td>1.8</td>
<td>2.2*</td>
</tr>
<tr>
<td>IFI16</td>
<td>1.1</td>
<td>1.8**</td>
</tr>
<tr>
<td>GBP2</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>IFI30</td>
<td>1.0</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

\(\text{**}\) \(p<0.01\), \(\text{*}\) \(p<0.05\)

\(^a\) LVL - low viral load (<10,000 RNA copies per ml)
\(^b\) HVL - high viral load (\(\geq\)10,000 RNA copies per ml)
\(^c\) C - HIV seronegative control
IFN-\(\alpha\) induces Sn expression
Do Sn and HIV-1 interact?

Sialic acid binding

Sn

Monocyte cell membrane
Does HIV-1 bind to Sn?

Protocol

• Replication deficient HIV-1, deletion in TAT-REV, (NIH AIDS Research and Reagent Program)

• Primary monocytes and IFN-induced monocytes (500 IU IFN-α) were incubated with HIV-1Δ INXS for 1 h at 37°C

• Following repeated washings to remove non-specific bound HIV-1Δ, cells were lysed and assayed for p24

• Binding specificity was evaluated using an anti-Sn mAb that blocks Sn N-terminus and prevents HIV-1 binding

• And pre-treated HIV-1Δ with sialidase, to remove sialic acid conjugates from gp120
IFN-α-induces HIV-1 binding

- IFN-α induces HIV-1 binding.
- The figure shows the p24 levels (pg/ml) in different treatments.
 - HIV-1: Monocytes and IFN-induced Sn+ monocytes.
 - Sn antibody and sialidase pretreatment conditions.

The bar chart illustrates the comparison of p24 levels under various conditions, highlighting the impact of IFN-α on HIV-1 binding.
Summary

• Sn expression correlates with viral load

• Sn expression extended to CD14\(^+\) monocytes

• Binding requires cellular expression of Sn and sialic acid conjugates on the virus

• IFN-\(\alpha\) up-regulates Sn expression on monocytes, which then binds HIV-1
Can Sn-associated HIV-1 infect target cells \textit{in trans}?

- HIV - 1 = lab-adapted virus NL4-3
- Target cells = HeLa cells transfected with constitutive expression of CD4, CXCR4 and CCR5 \textit{And} co-transfected with reporter gene luciferase (relative light units) under the Tat promoter (TZM-bl)
Can Sn-bound HIV-1 *Trans* Infect?

Monocytes

<table>
<thead>
<tr>
<th>Test tube</th>
<th>HIV bound – Sn+ monocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x washing</td>
<td>3x washing</td>
</tr>
</tbody>
</table>

TZM-bl cells

- **No infection**
- **Trans infection**
Results: Trans infection

Monocytic cell line

- THP-1
- TSn
- TSn + mAb

Human monocytes

- mono
- mono / IFN

Relative Light Units (RLU)
Potential sources of HIV-1

Trans

Budding virus from infected monocytes blocked by PI (Indinovir)
Confirms transinfection: monocytes cannot produce infective HIV-1 NL4-3 in the presence of indinavir
Can Sn Enhance HIV-1 Infectivity?

Sn+ monocytes Free HIV

HIV bound - Sn+ monocytes

Relative Light Units

Trans infection

TZM-bl cells Enhanced infectivity
Sn Enhances HIV-1 Infection

Monocytic cell line

Human monocytes

Relative Light Units (RLU)
Does Sn-bound HIV (NL4-3) use predicted receptors?

- mAb CD4 blocks CD4
- mAb CCR5 blocks CCR5
- TAK779 blocks CCR5
- mAb CXCR4 blocks CXCR4
- AMD3100 blocks CXCR4

HIV-1 Infection (Relative Light Units)
Summary

• HIV (NL4-3) bound to TSn cells can infect susceptible cells (*Trans infection*)

• *Trans* infection does not require monocyte infection

• HIV bound to Sn (IFN-\(\alpha\)-induced) on human monocytes trans infects reporter cells

• Monocytes expressing Sn capture free HIV and *trans* infect reporter cells

• Sn expression *enhances* HIV infectivity over 5-fold compared to free virus
What are the implications for CNS infection?
Single label immunohistochemistry for Sn in frontal cortex sections. (A) seronegative control, (B) HIV-1, (C) HAD and (D) HIVE.
Potential impact on CNS Infectivity

- HIV bound to Sn may be transported to the CNS during normal monocyte/macrophage trafficking
- Sn may facilitate \textit{trans} infection of susceptible cells in the CNS
- Sn may facilitate/enhance HIV infection in subjects with LVL - possibly explaining why they continue to have CNS infection
- Sn-expressing MØ cause myelin degeneration and axonopathic changes in PLP transgenic mice \textit{Ip et al 2007}
Sn causes demyelination
I. Kobar et al, Mol Cell Neurosci 31: 685 2006

Used a mouse model for inherited demyelinating neuropathy

CD8 T cells and macs influenced demyelination

Sn involved in mac-T cell interaction

Sn binds activated T cells
Possible mechanism for CNS infection

Markers
MCP-1
CCR5
CD16
Sn

High Viral Load
(IFN-α)
monocytes → Sn+ monocyte

Sn-bound HIV

Trans infection of T cell

Transmigration

BBB

CNS

Infected cells

Trans infection
Acknowledgements

Hans Rempel, PhD
Bing Sun, MD, PhD
Cyrus Calosing, BS
CD16 expression

CD16\(^+\) subset of Sn\(^+\) monocytes