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Gaussian Accelerated Molecular Dynamics (GaMD) 

 
1. Gaussian Accelerated Molecular Dynamics (GaMD) 
 

Gaussian Accelerated Molecular Dynamics (GaMD) is a biomolecular enhanced sampling method that works by 

adding a harmonic boost potential to smoothen the system potential energy surface. The boost potential follows 

Gaussian distribution, which allows for accurate reweighting using cumulant expansion to the second order. In a 

previous study[1], GaMD has been demonstrated on simulations of alanine dipeptide, chignolin folding and ligand 

binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained 

enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the 

GaMD simulations help us to identify distinct low energy states of the biomolecules and characterize the protein 

folding and ligand binding pathways quantitatively. 

 

Consider a system with N atoms at positions 𝑟 ≡ {𝑟!, ⋯ , 𝑟"}	. When the system potential 𝑉(𝑟)	is lower than a reference 

energy E, the modified potential 𝑉∗(𝑟) of the system is calculated as: 

 𝑉∗(𝑟) = 𝑉(𝑟) + ∆𝑉(𝑟),  

 ∆𝑉(𝑟) = /
!
$
𝑘1𝐸 − 𝑉(𝑟)4$, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸
 (1.1) 

where k is the harmonic force constant. The two adjustable parameters E and k are automatically determined based on 

three enhanced sampling principles. The reference energy needs to be set in the following range: 

 𝑉%&' ≤ 𝐸 ≤ 𝑉%() +
!
*
 , (1.2) 

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure that Eqn. (1.2) is valid, k 

has to satisfy: 𝑘 ≤ !
+!"#,+!$%

 Let us define 𝑘 ≡ 𝑘- ∙
!

+!"#,+!$%
 , then 0 < 𝑘- ≤ 1 . The standard deviation of ∆𝑉 

needs to be small enough (i.e., narrow distribution) to ensure proper energetic reweighting: 𝜎∆+ = 𝑘1𝐸 − 𝑉&/04𝜎+ ≤

𝜎- where 𝑉&/0 and 𝜎+  are the average and standard deviation of the system potential energies, 𝜎∆+  is the standard 

deviation of ∆𝑉 with 𝜎- as a user-specified upper limit (e.g., 10kBT) for proper reweighting. When E is set to the lower 

bound E=Vmax, 	𝑘- can be calculated as: 

  𝑘- = min(1.0, 𝑘-1 ) = min	(1.0, 2&
2'
∙ +!"#,+!$%
+!"#,+"()

).   (1.3) 

Alternatively, when the threshold energy E is set to its upper bound 	𝐸 = 𝑉%() +
!
*
, 	𝑘- is set to: 

 𝑘- = 𝑘-" ≡ (1 − 2&
2'
) +!"#,+!$%
+"(),+!$%

 , (1.4) 

if 𝑘-"  is found to be between 0 and 1. Otherwise, 	𝑘- is calculated using Eqn. (1.3). 
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2. Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD) 
 

Based on GaMD, a new algorithm called ligand GaMD or “LiGaMD” has been developed to simulate ligand binding 

and unbinding[2]. It works by selectively boosting the ligand non-bonded interaction potential energy. Another boost 

potential could be applied to the remaining potential energy of the entire system in a dual-boost algorithm 

(LiGaMD_Dual) to facilitate ligand binding. LiGaMD has been demonstrated on host-guest and protein-ligand 

binding model systems. Repetitive guest binding and unbinding in the β-cyclodextrin host were observed in hundreds-

of-nanosecond LiGaMD simulations. The calculated binding free energies of guest molecules with sufficient sampling 

agreed excellently with experimental data (< 1.0 kcal/mol error). In comparison with previous microsecond-timescale 

conventional molecular dynamics simulations, accelerations of ligand kinetic rate constants in LiGaMD simulations 

were properly estimated using Kramers’ rate theory. Furthermore, LiGaMD allowed us to capture repetitive 

dissociation and binding of the benzamidine inhibitor in trypsin within 1 μs simulations. The calculated ligand binding 

free energy and kinetic rate constants compared well with the experimental data. Therefore, LiGaMD provides a 

promising approach for characterizing ligand binding thermodynamics and kinetics simultaneously.  

In LiGaMD, we consider a system of ligand L binding to a protein P in a biological environment E. We decompose 

the potential energy into the following terms: 

 𝑉(𝑟) = 𝑉4,6(𝑟4) + 𝑉7,6(𝑟7) + 𝑉8,6(𝑟8) 

+	𝑉44,)6(𝑟4) + 𝑉77,)6(𝑟7) + 𝑉88,)6(𝑟8) 

+	𝑉47,)6(𝑟47) + 𝑉48,)6(𝑟48) + 𝑉78,)6(𝑟78). (2.1) 

where 𝑉4,6, 𝑉7,6 and 𝑉8,6 are the bonded potential energies in protein P, ligand L and environment E, respectively. 

𝑉44,)6 , 𝑉77,)6  and 𝑉88,)6  are the self non-bonded potential energies in protein P, ligand L and environment E, 

respectively. 	𝑉47,)6 , 𝑉48,)6  and 𝑉78,)6  are the non-bonded interaction energies between P-L, P-E and L-E, 

respectively. According to classical molecular mechanics force fields, the non-bonded potential energies are usually 

calculated as: 

 𝑉)6 = 𝑉9:9; + 𝑉/<=. (2.2) 

Where 𝑉9:9; and 𝑉/<= are the system electrostatic and van der Waals potential energies. Presumably, ligand binding 

mainly involves the non-bonded interaction energies of the ligand, 𝑉7,)6(𝑟) = 𝑉77,)6(𝑟7) + 	𝑉47,)6(𝑟47) +

𝑉78,)6(𝑟78). Therefore, we add a boost potential selectively to the ligand non-bonded potential energy according to 

the GaMD algorithm: 

 ∆𝑉7,)6(𝑟) = @
!
$
𝑘7,)6 A𝐸7,)6 − 𝑉7,)6(𝑟)B

$
, 𝑉7,)6(𝑟) < 𝐸7,)6
0, 𝑉7,)6(𝑟) ≥ 𝐸7,)6

 (2.3) 

where EL,nb is the threshold energy for applying boost potential and kL,nb is the harmonic constant.  
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Next, one can add multiple ligand molecules in the solvent to facilitate ligand binding to proteins in MD simulations. 

This is based on the fact that the ligand binding rate constant kon is inversely proportional to the ligand concentration. 

The higher the ligand concentration, the faster the ligand binds, provided that the ligand concentration is still within 

its solubility limit. In addition to selectively boosting the bound ligand, another boost potential could thus be applied 

on the unbound ligand molecules, protein and solvent to facilitate both ligand dissociation and rebinding. The second 

boost potential is calculated using the total system potential energy other than the non-bonded potential energy of the 

bound ligand as:  

 ∆𝑉>(𝑟) = /
!
$
𝑘>1𝐸> − 𝑉>(𝑟)4

$, 𝑉>(𝑟) < 𝐸>
0, 𝑉>(𝑟) ≥ 𝐸>

 (2.4) 

Where VD is the total system potential energy other than the non-bonded potential energy of the bound ligand, ED is 

the corresponding threshold energy for applying the second boost potential and kD is the harmonic constant. This leads 

to dual-boost LiGaMD (LiGaMD_Dual) with the total boost potential ∆𝑉(𝑟) = ∆𝑉!,#$(𝑟) + ∆𝑉%(𝑟). 

 
3. Peptide Gaussian Accelerated Molecular Dynamics (Pep-GaMD) 
 

Peptides often undergo large conformational changes during binding to the target proteins, being distinct from small-

molecule ligand binding or protein-protein interactions. We have developed another algorithm called peptide GaMD 

or “Pep-GaMD” that enhances sampling of peptide-protein interactions[3].  

In Pep-GaMD, we consider a system of ligand peptide L binding to a target protein P in a biological environment E. 

We decompose the potential energy into the following terms: 

 𝑉(𝑟) = 𝑉4,6(𝑟4) + 𝑉7,6(𝑟7) + 𝑉8,6(𝑟8) 

+	𝑉44,)6(𝑟4) + 𝑉77,)6(𝑟7) + 𝑉88,)6(𝑟8) 

+	𝑉47,)6(𝑟47) + 𝑉48,)6(𝑟48) + 𝑉78,)6(𝑟78). (3.1) 

where 𝑉4,6, 𝑉7,6 and 𝑉8,6 are the bonded potential energies in protein P, peptide L and environment E, respectively. 

𝑉44,)6 , 𝑉77,)6  and 𝑉88,)6  are the self non-bonded potential energies in protein P, peptide L and environment E, 

respectively. 	𝑉47,)6 , 𝑉48,)6  and 𝑉78,)6  are the non-bonded interaction energies between P-L, P-E and L-E, 

respectively.  

Presumably, peptide binding mainly involves in both the bonded and non-bonded interaction energies of the peptide 

since peptides often undergo large conformational changes during binding to the target proteins. Thus, the essential 

peptide potential energy is 𝑉7(𝑟) = 𝑉77,6(𝑟7) + 𝑉77,)6(𝑟7) + 	𝑉47,)6(𝑟47) + 𝑉78,)6(𝑟78). In Pep-GaMD, we add boost 

potential selectively to the essential peptide potential energy according to the GaMD algorithm: 
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  ∆𝑉7(𝑟) = /
!
$
𝑘71𝐸7 − 𝑉7(𝑟)4

$, 𝑉7(𝑟) < 𝐸7
0, 𝑉7(𝑟) ≥ 𝐸7

 (3.2) 

where EL is the threshold energy for applying boost potential and kL is the harmonic constant.  

In addition to selectively boosting the peptide, another boost potential is applied on the protein and solvent to enhance 

conformational sampling of the protein and facilitate peptide rebinding. The second boost potential is calculated using 

the total system potential energy other than the peptide potential energy as:  

 ∆𝑉>(𝑟) = /
!
$
𝑘>1𝐸> − 𝑉>(𝑟)4

$, 𝑉>(𝑟) < 𝐸>
0, 𝑉>(𝑟) ≥ 𝐸>

 (3.3) 

Where VD is the total system potential energy other than the peptide potential energy, ED is the corresponding threshold 

energy for applying the second boost potential and kD is the harmonic constant. This leads to dual-boost Pep-GaMD 

(Pep-GaMD_Dual) with the total boost potential ∆𝑉(𝑟) = ∆𝑉!(𝑟) + ∆𝑉%(𝑟). 

 
4. Protein-Protein Interaction - Gaussian Accelerated Molecular Dynamics (PPI-GaMD) 
 

In PPI-GaMD [4], we selectively boost interaction potential energy between protein partners to facilitate their slow 

dissociation. Meanwhile, another boost potential is applied to the remaining potential energy of the entire system to 

effectively model the protein’s flexibility and rebinding. We consider a system of ligand protein L binding to a target 

protein P in a biological environment E. The system comprises of N atoms with their coordinates 𝑟 ≡ {𝑟!, ⋯ , 𝑟"}	and 

momenta 𝑝 ≡ {𝑝!, ⋯ , 𝑝"}	. The system Hamiltonian can be expressed as: 

 𝐻(𝑟, 𝑝) = 𝐾(𝑝) + 𝑉(𝑟), (4.1) 

where 𝐾(𝑝) and 𝑉(𝑟) are the system kinetic and total potential energies, respectively. Next, we decompose the 

potential energy into the following terms: 

                                                  𝑉(𝑟) = 𝑉4,6(𝑟4) + 𝑉7,6(𝑟7) + 𝑉8,6(𝑟8) 

                                     																	+	𝑉44,)6(𝑟4) + 𝑉77,)6(𝑟7) + 𝑉88,)6(𝑟8) 

 +	𝑉47,)6(𝑟47) + 𝑉48,)6(𝑟48) + 𝑉78,)6(𝑟78), (4.2) 

where 𝑉4,6, 𝑉7,6 and 𝑉8,6 are the bonded potential energies in protein P, protein L and environment E, respectively. 

𝑉44,)6 , 𝑉77,)6  and 𝑉88,)6  are the self non-bonded potential energies in protein P, protein L and environment E, 

respectively. 	𝑉47,)6 , 𝑉48,)6  and 𝑉78,)6  are the non-bonded interaction energies between P-L, P-E and L-E, 

respectively. According to classical molecular mechanics force fields,[5, 6]  the non-bonded potential energies are 

usually calculated as 𝑉)6 = 𝑉9:9; + 𝑉/<= , where 𝑉9:9;  and 𝑉/<=  are the system electrostatic and van der Waals 

potential energies. The interaction energy between the protein binding partners is 	𝑉47,)6(𝑟47). In PPI-GaMD, we add 



 5 

boost potential selectively to the protein-protein interaction energy according to the GaMD algorithm: 

 ∆𝑉47.)6(𝑟) = @
!
$
𝑘47,)6 A𝐸47,)6 − 𝑉47,)6(𝑟47)B

$
, 𝑉47,)6(𝑟47) < 𝐸47,)6
0, 𝑉47,)6(𝑟47) ≥ 𝐸47,)6	,

 (4.3) 

where EPL,nb is the threshold energy for applying boost potential and kPL,nb is the harmonic constant. The PPI-GaMD 

simulation parameters are derived similarly as in the previous GaMD algorithm. 

In addition to selectively boosting the interaction energy between proteins P and L, another boost potential is applied 

on the remaining potential energy of the system to enhance conformational sampling of the proteins and facilitate 

protein diffusion and rebinding. The second boost potential is calculated using the total system potential energy other 

than the interaction potential between the proteins as:  

 ∆𝑉>(𝑟) = /
!
$
𝑘>1𝐸> − 𝑉>(𝑟)4

$, 𝑉>(𝑟) < 𝐸>
0, 𝑉>(𝑟) ≥ 𝐸>

 (4.4) 

where VD is the total system potential energy other than the interaction potential between the proteins, ED is the 

corresponding threshold energy for applying the second boost potential and kD is the harmonic force constant. This 

leads to dual-boost PPI-GaMD with the total boost potential ∆𝑉(𝑟) = ∆𝑉47,)6(𝑟47) + ∆𝑉>(𝑟).  

 
5. Energetic Reweighting using Cumulant Expansion to the Second Order (Gaussian Approximation) 

For energetic reweighting of GaMD simulations to calculate potential of mean force (PMF), the probability 

distribution along a reaction coordinate is written as 𝑝∗(𝐴) . Given the boost potential ∆𝑉(𝑟)
 
of each frame, 𝑝∗(𝐴) 

can be reweighted to recover the canonical ensemble distribution, 𝑝(𝐴), as: 

 𝑝1𝐴A4 = 𝑝∗1𝐴A4
〈9*∆'(-)〉/

∑ 〈E∗(G$)9*∆'(-)〉$1
$23

, 𝑗 = 1,… ,𝑀,  (5.1) 

where M is the number of bins, 𝛽 = 𝑘I𝑇 and 〈𝑒J∆+(K)〉A
 
is the ensemble-averaged Boltzmann factor of ∆𝑉(𝑟) for 

simulation frames found in the jth bin. The ensemble-averaged reweighting factor can be approximated using cumulant 

expansion: 

 〈𝑒J∆+(K)〉 = 𝑒𝑥𝑝 P∑ J4

*!
𝐶*M

*N! S, (5.2) 

where the first two cumulants are given by: 

 
𝐶! = 〈∆𝑉〉,

𝐶$ = 〈∆𝑉$〉 − 〈∆𝑉〉$ = 𝜎/$.
 (5.3) 

The boost potential obtained from GaMD simulations usually follows near-Gaussian distribution. Cumulant expansion 

to the second order thus provides a good approximation for computing the reweighting factor. The reweighted free 

energy 𝐹(𝐴) = −𝑘I𝑇	ln	𝑝(𝐴) is calculated as: 
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 𝐹(𝐴) = 𝐹∗(𝐴) − ∑ J4

*!
𝐶*$

*N! + 𝐹;,   (5.4) 

where 𝐹∗(𝐴) = −𝑘I𝑇	ln	𝑝∗(𝐴) is the modified free energy obtained from GaMD simulation and 𝐹; is a constant. 

 

6. Kinetic reweighting of GaMD simulations with Kramers’ Rate Theory 

 

Reweighting of biomolecular kinetics from GaMD simulations can be obtained by applying Kramers rate theory[2, 

7]. For a particle climbing over potential energy barriers, Kramers showed that the reaction rate depends on 

temperature and viscosity of the host medium. The reaction rates were derived for both limiting cases of small and 

large viscosity. In the context of biomolecular simulations in aqueous medium, it is relevant for us to focus on the 

large viscosity limiting case. Biomolecules move in the high friction (“overdamping”) regime and energy barriers are 

much greater than kBT (kB is the Boltzmann’s constant and T is temperature). In this case, the reaction rate is calculated 

as: 

 𝑘O ≅
$PQ!Q5

R
𝑒,ST *6U⁄ ,  (6.1) 

where 𝑤% and 𝑤6 are frequencies of the approximated harmonic oscillators (also referred to as curvatures of free 

energy surface) near the energy minimum and barrier, respectively, 𝜉 is the apparent friction coefficient and Δ𝐹 is the 

free energy barrier of transition. 

Without the loss of generality, we consider a 1D potential of mean force (PMF) free energy profile of a 

reaction coordinate F(A). Near minimum at Am, the free energy can be approximated by a harmonic oscillator of 

frequency 𝑤% , i.e., 𝐹(𝐴) = !
$
(2𝜋𝑤%)$(𝐴 − 𝐴%)$. Near barrier at Ab, the free energy is approximated as 𝐹(𝐴) =

𝐹6 −
!
$
(2𝜋𝑤6)$(𝐴 − 𝐴6)$ , where 𝐹6 is the free energy at Ab and 𝑤6 is the frequency of the approximated harmonic 

oscillator. Then we can calculate 𝑤% and 𝑤6 as: 

 𝑤 = \|T"(G)|
$P

,  (6.2) 

where 𝐹"(𝐴) is the second-order derivative of the PMF profile. 

The apparent friction coefficient 𝜉 or diffusion coefficient D with 𝜉 = 𝑘I𝑇/𝐷 can be estimated as follows. 

First, we calculate a survival function S(t) as the probability that the system remains in an energy well longer than 

time t. In a direct approach[8], we count the events that the system visits the energy well throughout a simulation. We 

record and measure the time intervals of each visiting event until the system escapes over an energy barrier. Then we 



 7 

have a time series Ti, where i=1, 2, …, N, and N is the total number barrier transitions observed in the simulation. The 

time series is subsequently ordered such that �̀�! ≤ �̀�$ ≤ ⋯ ≤ �̀�" . With that, the survival function is estimated as 

𝑆1�̀�(4 ≈ 	1 − 𝑖/𝑁, which is the probability that the system is trapped in the energy well for time longer than �̀�( . 

Alternatively, we can numerically calculate the time-dependent probability density of reaction coordinate A, 

𝜌(𝐴, 𝑡)	by solving the Smoluchowski equation along 1D PMF profile of the reaction coordinate:  

 XY(G,Z)
XZ

= 𝐷 X
XG
g𝑒,T(G) *6U⁄ X

XG
1𝑒T(G) *6U⁄ 𝜌4h.  (6.3) 

Then the survival function is calculated as 𝑆(𝑡) = 	∫ ∫ 𝜌(𝐴, 𝑡)𝑑𝐴𝑑𝑡G57
G53

M
Z , where 𝐴6! and 𝐴6$	are two boundaries of 

the energy well. The initial condition is often set as the Boltzmann distribution of reaction coordinate A in the energy 

well, i.e., 𝜌(𝐴, 0) = 𝑒,T(G) *6U⁄ . 

Second, using the above survival functions, we estimate the effective kinetic rates as the negative of the 

slopes in linear fitting of the ln[S(t)] versus t, i.e., 𝑘 = −𝑑ln[𝑆(𝑡)]/𝑑𝑡	. This is based on the assumption that the 

survival function exhibits exponential decay as observed in earlier studies. Finally, the apparent diffusion coefficient 

D is obtained by dividing the kinetic rate calculated directly using the transition time series collected from the 

simulation by that using the probability density solution of the Smoluchowski equation. 

The curvatures and energy barriers of the reweighted and modified free energy profiles, as well as the 

apparent diffusion coefficients, are calculated and used in Kramers’ rate equation to determine accelerations of 

biomolecular kinetics in the GaMD simulations. This allows us to recover the original biomolecular kinetic rate 

constants from the GaMD simulations.  
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