BIOGRAPHICAL SKETCH

Provide the following information for the key personnel in the order listed on Form Page 2. Follow this format for each person. **DO NOT EXCEED FOUR PAGES.**

NAME Ken D. McCarthy, Ph.D.	POSITION TITL Professor	POSITION TITLE Professor		
Ken D. McCartiny, Th.D.	1 10163301			
EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)				
INSTITUTION AND LOCATION	DEGREE (if applicable)	YEAR(s)	FIELD OF STUDY	
California State University at Fullerton	B.A.	1971	Biology	
University of Utah	Ph.D.	1975	Pharmacology	

A. Positions and Honors:

Research and/or Professional Experience

- 1975 1978 U.S.P.H.S. Fellow, Division of Developmental Biology, University of California, Los Angeles
- 1979 -1984 Assistant Professor, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- 1985 1990 Associate Professor, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- 1990 Professor, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC

Professional Service

- 1985 1986 NIH Study Section, Neurobiology 2; Adhoc Member
- 1986 -1987 NIH Study Section, Neurobiology 2; Member
- 1987 1991 NIH Study Section, Neurological Science 2; Member
- 1987 1988 Program Committee member for 1988 and 1989 Winter Conference on Brain Research
- 1988 NIH Site Visit Baltimore, MD.
- 1989 Symposium Organizer, Tissue Culture Association, entitled "<u>In Vitro</u> Models for Evaluating Mechanisms of Neurotoxicity".
- 1992 Program Chairman for 1993 American Society for Neurochemistry
- 1992 Premeeting Workshop Co-organizer for 1993 ASN Meeting entitled "Knockout Strategies In Molecular Neurobiology"
- 2004 NIH Study Section, Neurodegeneration and Biology of Glia; Member

B. <u>Selected peer-reviewed publications:</u>

McCarthy KD and de Vellis J. -Adrenergic receptor modulation of -adrenergic, adenosine and PGE1 increased adenosine 3':5'-cyclic monophosphate levels in primary cultures of glia. J.Cyclic Nuc.Res. 4: 15-26, 1978.

McCarthy KD and de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures. J.Cell Biol. 85: 890-902, 1980.

McCarthy KD. An autoradiographic analysis of -adrenergic receptors on immunocytochemically defined astroglia. J.Pharmacol.Exp.Ther. 226: 282-290, 1983.

Ingraham C and McCarthy KD. Plasticity of process-bearing glial cell cultures from neonatal rat cerebral cortical tissues. J.Neurosci. 9:63-69,1989.

Lerea L and McCarthy KD. Astroglial cells in vitro are heterogeneous with respect to expression of the alpha1-adrenergic receptor. Glia 2:135-147, 1989.

Salm AK and McCarthy KD. Expression of β-adrenergic receptors by astrocytes isolated from adult rat cortices. Glia 2: 346-352, 1989.

- Brooks RC, McCarthy KD and Morell P. Receptor-stimulated phospholipase α₂ activation is coupled to influx of external calcium and not to mobilization of intracellular calcium in C62B glioma cells. J.Biol.Chem. 264: 20147-20153, 1989.
- Lerea LS and McCarthy KD. Neuron-associated astroglial cells express β and α_1 -adrenergic receptors *in vitro*. Brain Res. 521:7-14, 1990.
- Salm AK and McCarthy KD. Norepinephrine-evoked calcium transients in cyltured type 1 astroglia. Glia 3:529-538, 1990.
- McCarthy KD and Salm AK. Pharmacologically distinct subsets of astrocytes identified by their calcium response to neuroligands. Neurosci. 41: 325-333, 1990.
- Enkvist MOK and McCarthy KD. Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J.Neurochem. 59:519-526, 1992.
- Shao Y and McCarthy KD. Regulation of astroglial responsiveness to neuroligands in primary culture. Neurosci. 55:991-1001, 1993.
- Shao Y and McCarthy KD. Quantitative relationship between 1-adrenergic receptor density and the receptor-mediated calcium response in individual astroglial cells. Mol.Pharmacol. 44:247-254, 1993.
- Enkvist MOK and McCarthy KD. Astroglial gap junction communication is increased by treatment with either glutamate or high K⁺ concentration. J.Neurochem. 62:489-495, 1994.
- Shao YP, Enkvist MOK and McCarthy KD. Glutamate blocks astroglial stellation: Effect of glutamate uptake and volume changes. Glia 11:1-10, 1994.
- Lyons S, Morrell P and McCarthy KD. Schwann cells exhibit P₂Y purinergic receptors that regulate intracellular calcium and are upregulated by cyclic AMP analogs. J.Neurochem. 63:552-560, 1994.
- He M and McCarthy KD. Oligodendroglial signal transduction systems are developmentally regulated. J.Neurochem. 63:501-508, 1994.
- Shao Y and McCarthy KD. Plasticity of astrocytes. Glia 11:147-155, 1994.
- Shao Y, Porter JT and McCarthy KD. Neuroligand receptor heterogeneity among astroglia. Perspect. Dev.Neurobiol. 2:205-215, 1994.
- Porter JT and McCarthy KD. GFAP-positive hippocampal astrocytes *in situ* respond to glutamatergic neuroligands with increases in [Ca²⁺]_i. Glia 13: 101-112, 1995.
- Shao Y and McCarthy KD. Receptor-mediated calcium signals in astroglia: multiple receptors, common stores and all-or-nothing responses. Cell Calcium 17:187-196, 1995.
- Porter JT and McCarthy KD. Adenosine receptors modulate [Ca²⁺]_i in hippocampal astrocytes *in situ*. J.Neurochem. 65:1515-1523, 1995.
- Giaume C and McCarthy KD. Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 19:319-325, 1996.
- Porter JT and McCarthy KD. Hippocampal astrocytes *in situ* respond to glutamate released from synaptic terminals. J.Neurosci. 16:5073-5081, 1996.
- He M, Howe DG and McCarthy KD. Oligodendroglial signal transduction systems are regulated by neuronal contact. J.Neurochem. 67:1491-1499, 1996.
- Porter JT and McCarthy KD. Astrocytic neurotransmitter receptors *in situ* and *in vivo*. Prog.Neurobiol. 51:439-455, 1997.
- Shao Y and McCarthy KD. Responses of Bergmann glia and granule neurons *in situ* to N-methyl-Daspartate, norepinephrine, and high potassium. J.Neurochem. 68:2405-2411, 1997.
- Howe DG and McCarthy KD. Analysis of neuron-Schwann cell interactions at the single cell level using dicisronic retroviral vectors. J. Neurosci. Methods, 83: 133-142, 1998.
- Shelton MK and McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors *in situ*. Glia, 26(1): 1-11, 1999.
- Shelton MK and McCarthy KD. Hippocampal astrocytes exhibit Ca²⁺-elevating muscarinic cholinergic and histaminergic receptors *in situ*. J.Neurochem. 74: 555-563, 2000.
- Howe DG and McCarthy KD. Retroviral inhibition of cAMP-dependent protein kinase inhibits myelination but not Schwann cell mitosis stimulated by interaction with neurons. J.Neurosci. 15: 3513-3521, 2000
- Nett, WJ, Oloff SH, and McCarthy KD. Hippocampal astrocytes *in situ* exhibit calcium oscillations that occur independent of neuronal activity. 87: 528-537, 2002.Fiacco TA and McCarthy KD. Astrocytic Ca⁺⁺waves increase spontaneous neuronal AMPA currents. J. Neurosci. 24:722-732, 2004.
- Lin, W., Kemper A, McCarthy KD, Pytel P, Wang JP, Campbell, IL, Utset MF, Popko B. Interferongamma induced medulloblastoma in the developing cerebellum. J Neurosci. 2004 Nov

Fiacco TA, McCarthy KD. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci. 2004 Jan 21;24(3):722-32.

Ye, P, Popken, GJ, Kemper A, McCarthy, K, Popko, B., and D'Ercole, AJ. Astrocyte-specific overexpression of insulin-like growth factor-1 promotes brain overgrowth and glial fibrillary acidic protein expression. J Neuroscience Res. 78:472-484, 2004.

Pascual, O, Casper, K, Kubera, C, Zhang, J, Revilla-Sanchez R, Sul, J-Y, Takano, H, Moss, SJ, McCarthy, KD, and Haydon, PG. Astrocyte Purinergic Signaling Coordinates Synaptic Networks, Sci, 310 (5745):113-116, 2005

Casper KB and McCarthy, KD. GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci. Feb. 2006

C. Current Grant Support

NS033938-06 4/04 – 3/09 NIH Priority Score: 2.8% Title: Astrocyte Regulation of Neuronal Activity In Vivo Thrust: To develop and use conditional gene knockouts to assess the role of astrocytes in regulating neuronal activity. NS020212 12/05 – 11/09 NIH Priority Score: 11%

Title: Neuronal-Astrocytic Communications In Vivo

Thrust: To use multiphoton imaging, patch clamp electrophysiology, caged molecules and geneticallymodified mice to examine the role of astrocytes in synaptic transmission.