PHCO 750

Short title: Proteomics

Long title: Proteomics Methods and Applications

Effective term: Fall 2019 (five weeks, two 90-min class meetings each week M/W)

Course units/hours: 1 credit hour Grading basis: (GRAD – H, P, L, F)

Course Component (lecture or lab): Lecture & lab

Course Instructors:

Laura Herring, PhD; Dept of Pharmacology (Course Director)
Lee Graves, PhD; Dept of Pharmacology (Guest Lecturer)
Dennis Golfarb, PhD; Dept of Pharmacology (Guest Lecturer)

Course Description:

The goal of this course is to familiarize students with the fundamental concepts of proteomics and its applications to real-world biomedical research. Lectures will focus on the fundamentals of mass spectrometry and three broad proteomics applications: expression proteomics, post-translational modification identification/quantitation, and affinity proteomics. Practical aspects of these applications, such as rigorous experimental design, sample preparation and data interpretation will be emphasized throughout the lectures. Students will also get hands-on experience preparing samples for LC-MS/MS analysis, as well as in-depth experience analyzing global quantitative proteomics data. Students will present on a specific topic assigned by the instructor.

There are no formal prerequisites for the course, but it is intended for 2nd year students and above who currently use or plan to use proteomics in their research.

Course objectives (learning outcomes):

Gain practical knowledge of mass spectrometry-based proteomics techniques in order to successfully design a rigorous proteomics experiment.

Gain experience preparing samples for proteomics analysis and analyzing proteomics data.

Course Assignments

Students will be given primary literature to read and a proteomics dataset to analyze.

Assessments

Grading will be based on attendance, participation in the class discussions, and student presentations.

Course Format

Students will attend ten 1.5 hr lectures and labs.

Course Schedule

Session 1: Introduction to Proteomics

- Historical perspective
- Mass spectrometry methods
- Proteomics applications

Session 2: Experimental design

- Proteomics workflow overview
- Rigor and Reproducibility
- Validation

Session 3: Expression proteomics

- Global quantitative proteomics analysis
- Spatial localization
- Clinical proteomics

Session 4: Post-translational modification (PTM) identification and quantification

- Types of PTMs
- Single protein PTM analysis
- Global phospho and ubiquitin analysis

Session 5: Affinity proteomics

- Protein-protein interactions
- Protein-nucleic acid interactions
- Protein-small molecule interactions
- Kinome profiling

Session 6: Lab

• Lab - sample preparation

Session 7: Lab & lecture

- Lab MS analysis
- Lecture Database searching, statistical and bioinformatics analysis

Session 8: Data analysis

Session 9: Student presentationsSession 10: Student presentations