

Review Article

Initial medical work-up of first-episode psychosis: a conceptual review

Oliver Freudenreich,^{1,2} S. Charles Schulz³ and Donald C. Goff^{1,2}

¹Massachusetts General Hospital Schizophrenia Program, Freedom Trail Clinic, ²Harvard Medical School, Boston, Massachusetts, and ³Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota, USA

Corresponding author: Dr Oliver Freudenreich, MGH Schizophrenia Program, Freedom Trail Clinic, 25 Staniford Street, 2nd Floor, Boston, MA 02114, USA. Email: ofreudenreich@partners.org

This topic was first presented as a talk 'Early Diagnosis of Schizophrenia' at the APA Annual Meeting 2008 in Washington on 4 May 2008 during an AstraZeneca-sponsored symposium entitled, 'Treating Patients Early: Updates on the Controversy'.

Received 7 September 2008; accepted 1 November 2008

Abstract

Aim: To help clinicians carry out a comprehensive, medical diagnostic assessment in first-episode patients who are suspected of developing schizophrenia.

Methods: Conceptual review of the published work with emphasis on the diagnostic goals of excluding medical causes of psychosis and establishing a medical baseline.

Results: There is no agreed-upon standard for the initial medical

work-up of first-episode cases. Excluding secondary causes of schizophrenia requires consideration of likelihood of disease; laboratory test performance; and relevance of positive test results.

Conclusions: We propose a medical work-up for first-episode psychosis that combines: (i) broad screening; (ii) exclusion of specific diseases informed by treatability and epidemiology; and (iii) medical baseline measures.

Key words: first-episode psychosis, medical work-up, secondary schizophrenia.

Vor die Therapie haben die Götter die Diagnose gestellt.

(The Gods have put diagnosis before treatment.)
– time-honoured medical adage

INTRODUCTION

Over the last decade, first-episode schizophrenia has become the focus of much clinical attention, particularly with regard to early intervention and treatment.¹ However, although many schizophrenia guidelines can be consulted,² they mostly focus on treatment, with less emphasis on diagnosis. Specifically, there is no agreed-upon standard for what constitutes a comprehensive, medical diagnostic assessment of a patient who has a first episode of psychosis, suspected to represent beginning schizophrenia. When we recently sampled clinicians who

attended the symposium, 'Treating Patients Early: Update on the Controversy' at the 2008 annual meeting of the American Psychiatric Association (APA) about their use of three selected tests for the work-up of first-episode psychosis (i.e. brain imaging, electroencephalogram and HIV), answers varied widely. We included the answers from those who responded (ranging from 338 to 361 participants) in Table 1 and contrast them with a summary of current guideline recommendations from three professional organizations (see references^{3–5} in Table 2).

Such differing opinions suggest that there is no single, right approach, and we are not proposing one. Hence, the goal of this conceptual review is not to advocate for one screening battery or to provide a review of all possible causes for psychosis but to help clinicians investigate a patient who has what appears to be a first episode of schizophrenia by

TABLE 1. Responses to three audience questions of about 700 clinicians who attended the symposium, 'Treating Patients Early: Update on the Controversy' at the 2008 annual meeting of the American Psychiatric Association (APA) regarding their use of selected tests for the work-up of first-episode psychosis

(1) Do you routinely order an EEG as part of a first-episode evaluation?	
No	63%
Yes	37%
(2) Which neuroimaging test do you routinely order as part of a first-episode psychosis evaluation?	
None	37%
Computed tomography	32%
MRI without contrast	19%
MRI with contrast	10%
SPECT	2%
(3) Do you routinely order HIV testing as part of a first-episode psychosis evaluation?	
No	79%
Yes	21%

EEG, electroencephalogram; MRI, magnetic resonance imaging; SPECT, single photon emission computed tomography.

TABLE 2. Summary of current guideline recommendations from three professional organizations regarding the initial work-up of first-episode psychosis

	APA 2004 ³ USA	CPA 2005 ⁴ Canada	RANZCP 2003 ⁵ Australia and New Zealand
Physical exam (PE)	Complete PE including neurological exam Vital signs Weight and height/BMI	PE including neurological exam Vital signs BMI, waist circumference	Neurological exam Weight/BMI
Routine laboratory tests	CBC, electrolytes, BUN/creatinine, liver function tests Thyroid function tests Pregnancy test (women of child-bearing age)	CBC, electrolytes, renal and liver function tests Thyroid function tests	
Ancillary tests	Test for syphilis Hepatitis C if clinically indicated HIV, if clinically indicated Urine toxicology screen Heavy metal screen, if clinically indicated	Syphilis test Hepatitis tests, if indicated HIV test, if indicated Toxicology screen	
Neuroimaging	MRI or CT, if clinically indicated (MRI preferred over CT)	CT or MRI should be carried out	CT
EEG	EEG, if clinically indicated		
Genetics		22q11 deletion syndrome, as clinically indicated	
Medical monitoring	Fasting blood glucose, lipid panel ECG, if clinically indicated Prolactin level, if indicated by history Clinical assessment of EPS and abnormal movements Ocular exam, if indicated Consider preventive health care	Fasting plasma glucose, lipid panel ECG Prolactin level where clinically indicated Assess for EPS Ocular exam	Fasting serum glucose ECG Neuro-exam for movement disorders

APA, American Psychiatric Association; BMI, body mass index; BUN, blood, urea, nitrogen; CBC, complete blood count; CPA, Canadian Psychiatric Association; CT, computed tomography; ECG, electrocardiogram; EEG, electroencephalogram; EPS, extrapyramidal symptoms; MRI, magnetic resonance imaging; RANZCP, Royal Australian and New Zealand College of Psychiatrists.

thinking through the logic of ordering *and not ordering* particular tests. The old clinical wisdom that 'diagnosis guides treatment guides prognosis' reminds clinicians that the medical approach (defined as an approach to clinical problems that

stresses diagnosis and differential diagnosis as well as the provision of care derived from this process) derives its strength from correctly diagnosing patients so that the most effective treatment can be selected. We will focus on the initial diagnostic

Initial work-up of first-episode psychosis

phase of probable schizophrenia with regard to excluding medical causes for psychosis (the sine qua non of any psychiatric diagnosis), and identifying medical morbidity. Although our discussion is based on experience with patients with psychosis in the USA or similar settings, the general principles will apply to other locales as well.

INITIAL DIAGNOSTIC GOALS

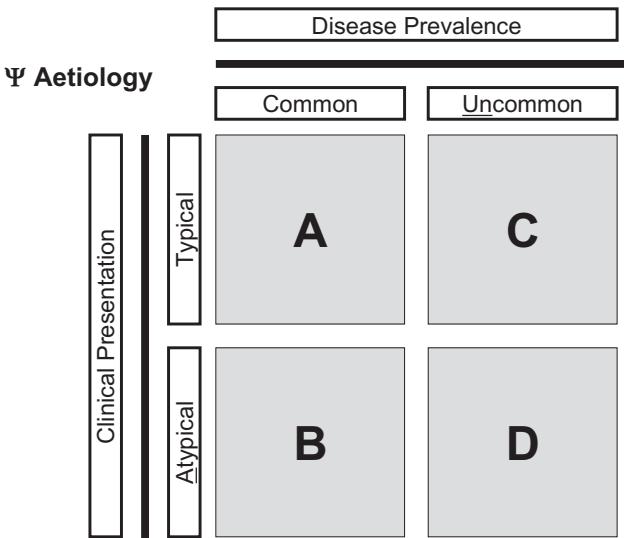
Families and physicians are invested in a timely diagnosis of a schizophrenia-spectrum disorder (i.e. schizophreniform disorder, schizophrenia or schizoaffective disorder) to initiate appropriate acute treatment (i.e. initiation of an antipsychotic) and set the stage for the appropriate, schizophrenia-specific long-term interventions (i.e. antipsychotic maintenance treatment and psycho-social rehabilitation). Making a diagnosis of a likely schizophrenia-spectrum disorder as early as possible and reducing the time until treatment with an antipsychotic is initiated (i.e. reducing the duration of untreated psychosis) holds the promise of improving long-term outcomes.^{6,7} As the diagnosis of schizophrenia hinges on the presence of a typical clinical picture *in the absence of a medical condition that could account for the observed and experienced psychopathological signs and symptoms, respectively*, an 'organic' work-up is an integral part of this diagnostic phase. Once schizophrenia is diagnosed, treatment will invariably involve the use of antipsychotics and other psychotropics. A medical baseline needs to be established to assure that medications can be given safely in the short run. In addition, a medical baseline sets the stage for long-term follow up and allows for monitoring of iatrogenic morbidity, particularly movement disorders and metabolic problems. All three guidelines clearly advocate both goals (i.e. the exclusion of medical causes of psychosis and a medical baseline assessment), albeit with varying degree of detail (see Table 2).

However, choosing appropriate screening tests to accomplish both goals meets with conceptual problems, which we will discuss first before moving to reviewing the pros and cons of specific tests for a diagnostic, medical work-up.

PROBLEMS EXCLUDING SECONDARY CAUSES OF PSYCHOSIS

When approaching the medical differential diagnosis of a patient with psychosis, a clinician faces three

FIGURE 1. Schematic breakdown of potential causes for psychosis (ψ) by disease prevalence and clinical presentation to illustrate the diagnostic challenge of first-episode psychosis.


Examples:

Cell A denotes common diseases where psychosis is typical (i.e. a presenting and characteristic symptom) (e.g. primary psychotic disorders themselves and drug-induced psychosis).

Cell B denotes diseases that are common but where psychosis is rarely a presenting feature (e.g. stroke, HIV).

Cell C denotes uncommon diseases (rare diseases or diseases rarely encountered in a particular treatment setting) that include psychosis in their classic presentation (e.g. maladie du sommeil).

Cell D denotes uncommon diseases where psychosis is possible but not characteristic (e.g. adult-onset genetic syndromes such as Niemann-Pick's disease).

problems: creating a manageable list of relevant diseases to exclude; choosing the appropriate tests to rule-in or rule-out diseases; and judging the relevance of a positive test result.

Problem #1: the prevalence/rarity problem

One obvious problem facing a clinician is the huge variety of medical diseases and toxins that can potentially present with psychosis (for a tabulated list, see Freudenreich *et al.*⁸). A breakdown of potential causes for psychosis by disease prevalence (indicating how familiar the clinician will be with the disease) and clinical presentation (with regard to propensity of psychosis to be part of the clinical syndrome) as shown in Figure 1 illustrates the diagnostic challenge graphically. (The relevant diseases for each cell will depend on the country and treatment setting.)

Common diseases with typical presentations (i.e. psychosis as an expected feature of the presentation) should allow for a quick and accurate working

diagnosis. In most settings, this cell (Cell A) will contain mostly drug-induced psychoses and the primary psychotic disorders themselves once a delirium has been excluded. Many fairly common medical diseases, however, can potentially present with psychosis although this would be clinically atypical (Cell B). For example, a manic patient with psychosis presenting in Uganda could be suffering from HIV-related secondary mania⁹ even though the majority of HIV patients do not have psychosis. Similarly, although a stroke can lead to psychosis, this outcome is rare.¹⁰ Although clinicians will be familiar with the disease, they might not be familiar with psychosis as part of the syndrome. Psychiatric disorders themselves can be atypical as well, particularly with regard to age of onset and symptom picture. Uncommon diseases with typical (or even 'classic') presentations (Cell C) pose significant challenges as clinicians might have never seen the disease or have limited experience with it. Some diseases will be uncommon in general (e.g. acute intermittent porphyria), some uncommon in certain geographic areas (e.g. maladie du sommeil or sleeping sickness caused by the protozoan, trypanosoma gambiense will be uncommonly encountered in North America but not in West Africa). Psychiatrically, some culture-bound syndromes fall into this category (e.g. bouffée délirante as an example of an acute-onset psychotic syndrome without a prototypical prodrome). Rare disorder with atypical presentations (Cell D) will only be diagnosed by astute clinicians who remain vigilant and informed (e.g. genetic syndromes that can also have an adult onset, such as Niemann–Pick's disease¹¹ and Tay–Sachs disease;¹² or newly delineated syndromes, such as paraneoplastic syndromes related to antibodies to *N*-methyl-d-aspartate receptors^{13,14}).

To put the above discussion in perspective, we can look at data from the seminal Northwick Park First-Episode study in the UK.¹⁵ Among 268 patients between the ages of 15 and 70 referred for a suspected first episode of schizophrenia (i.e. not suspected of suffering from an 'organic' syndrome), 9 (3%) were subsequently discovered to have clear-cut 'organic' disease. In this cohort, there were three patients of neurosyphilis, two patients of neurosarcoidosis, one lung cancer, one autoimmune multisystem disease, one patient of cerebral cysticercosis and one patient of thyrotoxicosis. Although the specific causes will undoubtedly vary in other cohorts, 3% can serve as a benchmark incidence for expected medical causes for psychosis in Western countries.

Problem #2: test performance

To avoid missing medical diagnoses, physicians might be inclined to order screening tests. However, all tests are inherently imperfect in that no test has 100% sensitivity or specificity. Test performance in the real world depends on the prevalence of the disorder under investigation.

Taking test characteristics into account, general principles apply when making a decision with regard to ordering any test in the work-up of first-episode patients:

- 1 The predictive values of any test depend on the disease prevalence (Bayes' theorem of conditional probabilities): indiscriminate screening for a disease that is not clinically suspected is particularly unwise if a disease is rare as positive test results will most likely represent a false-positive test. Put differently, testing for rare diseases is most useful if the disease is clinically suspected (i.e. if there is a high pretest probability). Clinical judgement, however, is required to decide when a false-positive result (obtained with an inexpensive screening test) outweighs the risk of missing a disease altogether.
- 2 A useful distinction can be drawn with regard to the purpose of a test, whether a test is ordered to rule in a suspected disease or to rule one out.¹⁶
 - Rule-in tests. Such tests should have high specificity and should be ordered to confirm a disease. If positive, you will keep the disease on your differential list. Some diagnoses can be very difficult to make if no good rule-in test exists (e.g. a test is somewhat specific but has low sensitivity); in such circumstances, a diagnosis must be actively pursued (e.g. serial electroencephalograms (EEGs) to confirm a clinically suspected diagnosis of epilepsy; adding 24-h urine copper if Wilson's disease is suspected despite normal ceruloplasmin level).
 - Rule-out tests. It is very important that such tests, which are often screening tests, have a very high sensitivity (i.e. have a low rate of false negatives) for if such a test is negative, you will remove the disease from your differential list. A highly sensitive test that is negative is reassuring regarding the absence of disease; normal magnetic resonance imaging (MRI) and negative HIV test are examples of reassuring test results of highly sensitive tests. The serum rapid plasma reagins is an example of a less than ideal screening test as it can be negative in late-stage infections, the stage of interest in psychotic patients suspected of neurosyphilis.

Problem #3: comorbidity and causality

Discovering a medical disease in a patient with psychosis leads to the question of relevance: is the disease aetiologically or pathophysiologically relevant with regard to psychosis? Slater was one of the first to systematically examine the question of causation in comorbid conditions in an influential essay on the relationship between epilepsy and schizophrenia.¹⁷ He differentiated between three theoretical levels of causation: epilepsy and psychosis representing mere chance combinations; epilepsy precipitating genuine schizophrenia; or a schizophrenia-like illness being purely epileptogenic in origin. Given our lack of knowledge about the aetiology and pathophysiology of schizophrenia, the role of comorbid conditions is often less than clear. Using Slater's organizing scheme, drug use could be incidental; it might precipitate 'genuine' schizophrenia in vulnerable individuals; or it might be solely responsible for the psychosis and resolve completely if drug use ceases. Further complicating this problem, different relationships could be true in different patients.

Even if a discovered disease is not thought to be aetiologically relevant, it could still be important to diagnose. Alvan Feinstein, the father of clinical epidemiology,¹⁸ added to our understanding of such aetiologically unrelated yet important, 'true' comorbidity. Using cancer as a model, he showed that the presence of comorbidity that was not a feature of the cancer itself influences the natural history of cancer and in that way impacts prognosis.¹⁹ In schizophrenia, comorbid conditions such as smoking or the metabolic syndrome that are not features of schizophrenia itself not only complicate psychiatric management but they have a profound impact on the prognosis quo ad vitam, just as in cancer. Other than suicide, preventable medical disease-related mortality is responsible for the reduced life expectancy in schizophrenia patients compared with the general population.^{20,21} It is this latter point that justifies a thorough medical baseline assessment.

DIAGNOSTIC MEDICAL WORK-UP

Exclusion of medical causes of psychosis

As the preceding section has shown, accomplishing the first goal of a medical work-up, excluding all potential medical causes for psychosis, is conceptually impossible, let alone pragmatically not feasible. To solve this dilemma and deal with the fear of missing a treatable disease, clinicians can choose

between two different work-up philosophies: an academic approach that is guided by the ideal of a comprehensive differential diagnosis and the systematic exclusion of possible diseases, requiring extensive screening; and a pragmatic approach that takes into account the natural history of most illnesses (i.e. to eventually declare themselves) and cost. Several authors have argued for more extensive screening than commonly offered, both in general²² and specifically for metabolic disorder.²³ Based on a review of the published work, Coleman and Gilbert²⁴ have assembled an extensive list of diseases that can potentially present with psychosis and put together suggestions for screening batteries. Conceptually, they are correct in their argument that we can only extend the phenotype of some medical diseases (in this case diseases presenting atypically with psychosis) if we look for them. However, apart from the feasibility in many treatment settings, the yield of such an extensive work-up has not been empirically validated, particularly as most diseases can be expected to eventually declare themselves with ancillary signs or symptoms beyond psychosis.

The two philosophies must not be mutually exclusive, and a feasible laboratory test battery can be constructed that contains some element of broad screening, plus the exclusion of specific disorders informed by treatability and epidemiology. If necessary, the initial work-up can even be pared down and extended later if the clinical picture changes, particularly if non-response develops or the clinical picture changes. This latter scenario assumes that long-term follow up is possible.

What screening laboratory battery?

Few would argue against obtaining a complete blood count, electrolytes (including calcium) as well as tests of kidney function and liver function to establish the absence of gross organ failure. The value of urine drug screening is also undisputed. Although of unproven utility, we propose to include two broad, non-specific markers of inflammation (i.e. erythrocyte sedimentation rate and antinuclear antibody) to broadly screen for inflammatory and rheumatologic disorders. In addition, several specific diseases should be excluded, particularly conditions that are highly treatable but that might not be apparent clinically unless tested for, including thyroid disease (i.e. thyroid-stimulating hormone), Wilson's disease (i.e. ceruloplasmin level), pernicious anaemia (i.e. vitamin B12) and two infections, neurosyphilis and HIV. Guidelines identify neurosyphilis and HIV as specific diseases to screen for (in the presence of risk factors). Interestingly, HIV

testing was only routinely offered by a minority of APA attendees. We see this as problematic as HIV can present with psychosis, is prevalent, easily diagnosable and treatable. Of note, the Centers for Disease Control has recently recommended universal screening without regard to risk factors.²⁵ (State laws must be followed, and not all states allow opt-out testing (i.e. a test will be carried out unless explicitly refused) but require consent, including written consent before testing.) Although the rapid plasma reagent is often reflexively ordered to screen for neurosyphilis, more sensitive (and specific treponemal-specific tests are increasingly used for syphilis screening (<http://www.cdc.gov/std/treatment/2006/toc.htm>)). A negative FTA-ABS (fluorescent treponemal antibody absorbed) which has a sensitivity of 97% in patients of neurosyphilis argues strongly against exposure to syphilis.²⁶

Any additional tests should be guided by the clinical picture itself, family history and epidemiological considerations. For example, a lumbar puncture should be offered if infectious processes are a clinical consideration and serum alone is inadequate to establish a diagnosis. A chest X-ray would be indicated if there is suspicion of sarcoidosis or a paraneoplastic syndrome in a smoker. Urine testing for heavy metals is specifically mentioned in the APA guideline (e.g. if work environment suggests exposure to toxins).

Currently, routine genetic testing is not recommended in schizophrenia unless individual features or a family history suggests the presence of a genetic syndrome. The only guideline that addresses genetic testing is the Canadian Schizophrenia Guideline, which recommends fluorescent *in situ* hybridization testing for chromosome 22q11 deletion or velocardiofacial syndrome if certain clinical features are present. Such clinical red flags include childhood learning difficulties or low IQ; a history of midline defects (e.g. cleft lip or palate); cardiac abnormalities; dysmorphic features (e.g. long face with prominent upper jaw, flattening of the cheeks, underdeveloped lower jaw or prominent nose with narrow nasal passages); or a history of recurrent ear infections or hearing loss. In a cohort of 634 Israeli schizophrenia patients, approximately 1% of patients were carrying the 22q11 deletion.²⁷ Cytogenetic testing should be considered in patients with childhood-onset schizophrenia and associated cognitive or developmental problems as a higher rate of genetic problems can be identified in such patients.²⁸ However, genetic testing is only clinically useful if the discovery of a genetic syndrome leads to further testing for and treatment of medical conditions associated with the syndrome or genetic counselling.

TABLE 3. Indications for ordering an electroencephalogram for the work-up of first-episode psychosis

Any documented seizure history†
History suggestive of ictal events (e.g. episodic loss of consciousness, staring spells)†
Serious past head injury†
Uncooperative patient with confusion
Suspicion of narcolepsy (i.e. hallucinations occurring at sleep–wake cycle transitions)‡

†Sleep-deprived electroencephalogram preferred.

‡Requires Multiple Sleep Latency Test.

How useful is an EEG?

In clinical practice, a random EEG is frequently obtained in the work-up of first-episode psychosis; 37% of APA participants did so. This is a problematic practice as an EEG is neither sensitive nor specific. George Murray, MD summarizes the sensitivity problem the following way: 'If you go fishing and you don't catch anything, you do not conclude that there are no fish in the ocean' (Dr George Murray, pers. comm., 1999). In their classic study, Salinsky and colleagues showed that serial, sleep-deprived EEGs are often necessary to support a clinical diagnosis of epilepsy (with a positive EEG showing interictal epileptiform activity), with diminishing returns after three or four negative EEGs.²⁹ Of note, in their cohort of 429 referred epilepsy patients, only 59% had a positive EEG. EEG specificity is also problematic. Manchanda and colleagues³⁰ reported that 17% of 122 first-episode patients had a clearly arrhythmic EEG. Although a arrhythmic EEG is a bad prognostic sign with regard to symptom remission in first-episode patients,^{30,31} such 'biomarkers of doom' are not useful in treatment selection. Another confound are medication-induced EEG changes. For example, in a prospective trial of 50 chronic schizophrenia patients who were switched from haloperidol or fluphenazine to clozapine, 53% developed EEG changes, including spike/sharp activity in 13%.³²

In summary, although an EEG is useful to confirm a seizure disorder when the clinical situation suggests one (see Table 3 for EEG indications), there is no clear advantage of ordering EEGs routinely. If an EEG is ordered because of suspected seizures, the EEG should be sleep-deprived (best if patient actually falls asleep) to increase the likelihood of EEG abnormalities and it might have to be repeated; Holter-EEG monitoring might be necessary in some patients to establish a diagnosis of epilepsy. Note that narcolepsy that can be confused with schizophrenia³³ is not diagnosed with a routine EEG

Initial work-up of first-episode psychosis

but requires a Multiple Sleep Latency Test. None of the guidelines recommends a screening EEG.

How useful is neuroimaging?

To judge the value of brain imaging, it helps to know the expected base rate of abnormal neuroimaging finding in the general population. Katzman and colleagues examined 1000 MRIs from normal, healthy persons who served as controls in various research studies (mean age 55 years).³⁴ Although 82% of scans were normal, 18% were considered abnormal (15.1% incidental, not requiring follow up; 1.8% requiring routine referral; and 1.1% requiring urgent referral, mostly for brain tumours). Rates very similar to this base rate, with 78% normal and 22% abnormal MRIs, were found in a cohort of 152 first-episode patients (mean age 22 years) who had an MRI carried out as part of a baseline evaluation.³⁵ Although 13/152 patients (8%) were in need of referral for further evaluation, only 2/152 (1.3%) were judged to have a disease aetiologically related to psychosis (demyelination in both patients). The results for routine computed tomographies are comparable to MRI with regard to focal lesions. For example, in one study of 127 healthy, young military recruits, only four scans (3%) were found to show incidental abnormalities.³⁶ In another cohort of 168 first-episode psychosis admissions who underwent computed tomography scanning, focal findings were present in 6.6% of patients.³⁷ However, non-specific ventricular and cortical enlargement was noted in up to 40% of patients. Although statistically associated with a worse prognosis, such a 'biomarker of doom' (cf. EEG) is not useful for clinical decision-making for individual patients.

Thus, the yield of neuroimaging in prototypical first-episode patients (i.e. young, medically healthy cohort with no clinical indication for suspected 'organic' pathology) is going to be low, albeit not zero, and a clinically important medical disease can be expected for perhaps 8% of patients (although disorders of aetiological relevance are probably much less likely). The most likely findings are developmental abnormalities without any clinical significance but in some rare instances metabolic disorders affecting the white matter can be picked up.³⁸ Nevertheless, even a negative scan is valuable, and the most important argument for routine brain imaging of first-episode patients is perhaps this: a negative scan establishes the 'functional' character of the psychosis and can help patients and families towards acceptance of a psychiatric disorder. For a compilation of pros and cons of routine imaging screening see Table 4.

TABLE 4. Arguments for and against the CT/MRI in the work-up of first-episode psychosis

Arguments against:

- Many incidental findings
- Abnormal finding does not establish causality
- Low yield

Arguments for:

- MRI can substitute for other screening (e.g. temporal lobe sclerosis of epilepsy; metabolic disorders affecting white matter)†
- Medico-legal (missed brain tumour)
- Baseline for chronic disorder
- Negative CT/MRI provides reassurance and support of diagnosis of schizophrenia

†Not been empirically validated.

CT, computed tomography; MRI, magnetic resonance imaging.

The majority of the APA audience endorsed some form of routine neuroimaging, as do two of the three guidelines. If brain imaging is offered, we agree with the APA guideline that an MRI should be the preferred imaging method as it is more sensitive to detect those lesions of interest that are associated with psychosis (i.e. white matter diseases; brain tumours; temporal lobe abnormalities including sclerosis associated with temporal lobe epilepsy).

Medical baseline assessment

In addition to excluding medical disorders as a proximate cause of psychosis, establishing the presence of relevant medical comorbidities is the second goal of the medical work-up.

Comorbid medical disorders relevant for the psychiatrist and hence particularly important to identify in the beginning of treatment are those that influence the initial dose and choice of treatment with regard to immediate safety (e.g. normal renal and liver function; excluding cardiac disease with an electrocardiogram (ECG); and excluding pregnancy with a pregnancy test).

In addition, as for most patients with schizophrenia, physical health problems compounded by iatrogenic complications are a strong possibility, establishing a medical baseline is crucial. Such a baseline allows for proactive monitoring and at least secondary prevention of antipsychotic-induced medical problems. The goal is to reduce long-term morbidity and mortality. A broad consensus about the need for longitudinal physical health monitoring has emerged.³⁹⁻⁴¹ All guidelines focus on two areas (with regard to iatrogenic morbidity from antipsychotics): movement disorders and metabolic problems. A physical examination with emphasis on

neurological abnormalities, weight and height (to calculate body mass index) and waist circumference as well as fasting glucose and lipid profile will establish a comprehensive baseline that allows for the early recognition of abnormal movements and metabolic problems. Guidelines do not suggest checking prolactin levels unless a patient has symptomatic hyperprolactinaemia. There is currently no consensus about the value of diagnosing asymptomatic antipsychotic-induced hyperprolactinaemia despite possible long-term health consequences (e.g. osteoporosis).⁴² A prolactin level for all patients on prolactin-elevating antipsychotics would establish if hyperprolactinaemia is in fact present, giving patients the chance to make an informed decision regarding switching to a prolactin-sparing antipsychotic. In healthy, young adults, an ECG and an eye exam are unlikely to be abnormal; an ECG should probably be obtained routinely to guard against sudden cardiac death. Other health screening can easily be added if clinically indicated (e.g. screening for hepatitis C if injection drug use). The role of the psychiatrist continues to be defined with regard to the extent of responsibility for routine medical care of psychiatric patients.⁴³

SUMMARY

A focused medical work-up that accomplishes our two diagnostic goals (i.e. excluding medical causes of psychosis and establishing a medical baseline) is proposed in Table 5. The choice of tests was guided by an acknowledgment of the difficulties as outlined in this paper, particularly that the most comprehensive battery of diagnostic tests is not necessarily the best one: screening indiscriminately for rare disorders predictably results in too many false-positive tests. Also, for suspected disorders, a negative test could be false negative, and such diagnoses must be actively pursued. Local considerations (e.g. infectious diseases endemic to area) and individual-specific attributes (e.g. work place exposure to toxins) are important considerations in selecting the most appropriate laboratory tests. And finally, the role of aetiology in comorbid conditions cannot always be fully elucidated. Perhaps the best assurance against missed medical diagnoses is long-term follow up and a willingness to revisit the issue of screening in patients who are refractory to treatment or if the clinical picture changes. The National Institute for Clinical Excellence Schizophrenia Guideline from the British National Health Service (available at <http://www.nice.org.uk/Guidance/>

TABLE 5. Medical work-up for first-episode psychosis

Physical exam with emphasis on neurological exam
Vital signs
Weight and height (BMI), waist circumference
ECG (if cardiac risk)
<i>Laboratory tests</i>
Broad screening and medical baseline:
CBC
Electrolytes including calcium
Renal function tests (BUN/creatinine)
Liver function tests
Erythrocyte sedimentation rate
Antinuclear antibody
Fasting glucose
Lipid profile
Consider prolactin level
Consider hepatitis C (if risk factors)
Pregnancy test (in women of child-bearing age)
Urine drug screen
Exclude specific treatable disorders:
TSH
FTA-ABS (fluorescent treponemal antibody absorbed)
HIV test
Ceruloplasmin
Vitamin B12
<i>Neuroimaging</i>
MRI (preferred over CT)
<i>Ancillary tests</i>
Expand aetiological search if indicated, taking into account epidemiology:
For example, CXR, EEG, lumbar puncture, karyotype, heavy metal testing
Expand medical monitoring if indicated:
For example, eye exam (if risk factors for cataracts)

BMI, body mass index; BUN, blood, urea, nitrogen; CBC, complete blood count; CT, computed tomography; CXR, chest X-ray; ECG, electrocardiogram; EEG, electroencephalogram; MRI, magnetic resonance imaging; TSH, thyroid-stimulating hormone.

CG1) recommends supporting referral for a second opinion in view of the significant uncertainty and long-term ramifications after a first episode of psychosis and possible diagnosis of schizophrenia. Such specialist referrals can include a review of the adequacy of the initial medical work-up.

REFERENCES

1. Yung AR, Killackey E, Hetrick SE et al. The prevention of schizophrenia. *Int Rev Psychiatry* 2007; **19**: 633–46.
2. Gaebele W, Weinmann S, Sartorius N et al. Schizophrenia practice guidelines: international survey and comparison. *Br J Psychiatry* 2005; **187**: 248–55.
3. Lehman AF, Lieberman JA, Dixon LB et al. Practice guideline for the treatment of patients with schizophrenia, second edition. *Am J Psychiatry* 2004; **161** (Suppl. 2): 1–56.
4. Canadian Psychiatric Association. Clinical Practice Guidelines. Treatment of Schizophrenia. *Can J Psychiatry* 2005; **50** (Suppl. 1): 1S–56S.

Initial work-up of first-episode psychosis

5. McGorry P, Killackey E, Elkins K et al. Summary Australian and New Zealand clinical practice guideline for the treatment of schizophrenia. *Australas Psychiatry* 2003; **11**: 136–47.
6. Perkins DO, Gu H, Boteva K et al. Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. *Am J Psychiatry* 2005; **162**: 1785–804.
7. Marshall M, Lewis S, Lockwood A et al. Association between duration of untreated psychosis and outcome in cohorts of first-episode patients: a systematic review. *Arch Gen Psychiatry* 2005; **62**: 975–83.
8. Freudenreich O, Holt DJ, Cather C et al. The evaluation and management of patients with first episode schizophrenia. A selective, clinical review of diagnosis, treatment, and prognosis. *Harv Rev Psychiatry* 2007; **15**: 189–211.
9. Nakimuli-Mpungu E, Musisi S, Kiwuwa Mpungu S et al. Primary mania versus HIV-related secondary mania in Uganda. *Am J Psychiatry* 2006; **163**: 1349–54.
10. Chemerinski E, Robinson RG. The neuropsychiatry of stroke. *Psychosomatics* 2000; **41**: 5–14.
11. Walterfang M, Fietz M, Fahey M et al. The neuropsychiatry of Niemann–Pick type C in adulthood. *J Neuropsychiatry Clin Neurosci* 2006; **18**: 158–70.
12. MacQueen GM, Rosebush PI, Mazurek MF. Neuropsychiatric aspects of the adult variant of Tay–Sachs disease. *J Neuropsychiatry Clin Neurosci* 1998; **10**: 10–19.
13. Sabin TD, Jednacz JA, Staats PN. Case 26–2008: a 26-year-old woman with headache and behavioral changes. *N Engl J Med* 2008; **359**: 842–53.
14. Nasky KM, Knittel DR, Manos GH. Psychosis associated with anti-N-methyl-D-aspartate receptor antibodies. *CNS Spectr* 2008; **13**: 699–702.
15. Johnstone EC, Macmillan JF, Crow TJ. The occurrence of organic disease of possible or probably aetiological significance in a population of 268 cases of first episode schizophrenia. *Psychol Med* 1987; **17**: 371–9.
16. Baldessarini RJ, Finklestein S, Arana GW. The predictive power of diagnostic tests and the effect of prevalence of illness. *Arch Gen Psychiatry* 1983; **40**: 569–73.
17. Slater E, Beard AW. The schizophrenia-like psychoses of epilepsy. V. Discussion and conclusions. *Br J Psychiatry* 1963; **109**: 143–50.
18. Sackett DL. Clinical epidemiology: what, who, and whither. *J Clin Epidemiol* 2002; **55**: 1161–6.
19. Piccirillo JF, Feinstein AR. Clinical symptoms and comorbidity: significance for the prognostic classification of cancer. *Cancer* 1996; **77**: 834–42.
20. Brown S. Excess mortality of schizophrenia. A meta-analysis. *Br J Psychiatry* 1997; **171**: 502–8.
21. Leucht S, Burkard T, Henderson J et al. Physical illness and schizophrenia: a review of the literature. *Acta Psychiatr Scand* 2007; **116**: 317–33.
22. Coleman M, Gillberg C. A biological approach to the schizophrenia spectrum disorders. *J Neuropsychiatry Clin Neurosci* 1997; **9**: 601–5.
23. Golomb M. Psychiatric symptoms in metabolic and other genetic disorders: is our 'organic' workup complete? *Harv Rev Psychiatry* 2002; **10**: 242–8.
24. Coleman M, Gillberg C. *The Schizophrenias. A Biological Approach to the Schizophrenia Spectrum Disorders*. New York, NY: Springer Publishing Company, 1996.
25. Branson BM, Handsfield HH, Lampe MA et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. *MMWR Recomm Rep* 2006; **55** (RR14): 1–17.
26. Lair L, Naidech AM. Modern neuropsychiatric presentation of neurosyphilis. *Neurology* 2004; **63**: 1331–3.
27. Horowitz A, Shifman S, Rivlin N et al. A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. *Schizophr Res* 2005; **73**: 263–7.
28. Nicolson R, Giedd JN, Lenane M et al. Clinical and neurobiological correlates of cytogenetic abnormalities in childhood-onset schizophrenia. *Am J Psychiatry* 1999; **156**: 1575–779.
29. Salinsky M, Kanter R, Dasheiff RM. Effectiveness of multiple EEGs in supporting the diagnosis of epilepsy: an operational curve. *Epilepsia* 1987; **28**: 331–4.
30. Manchanda R, Norman R, Malla A et al. EEG abnormalities and two year outcome in first episode psychosis. *Acta Psychiatr Scand* 2005; **111**: 208–13.
31. Manchanda R, Norman R, Malla A et al. EEG abnormalities and 3-year outcome in first episode psychosis. *Acta Psychiatr Scand* 2008; **117**: 277–82.
32. Freudenreich O, Weiner RD, McEvoy JP. Clozapine-induced electroencephalogram changes as a function of clozapine serum levels. *Biol Psychiatry* 1997; **42**: 132–7.
33. Douglass AB, Hays P, Pazderka F et al. Florid refractory schizophrenias that turn out to be treatable variants of HLA-associated narcolepsy. *J Nerv Ment Dis* 1991; **179**: 12–17.
34. Katzman GL, Dagher AP, Patronas NJ. Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. *JAMA* 1999; **282**: 36–9.
35. Lubman DI, Velakoulis D, McGorry PD et al. Incidental radiological findings on brain magnetic resonance imaging in first-episode psychosis and chronic schizophrenia. *Acta Psychiatr Scand* 2002; **106**: 331–6.
36. Bain BK. CT scans of first-break psychotic patients in good general health. *Psychiatr Serv* 1998; **49**: 234–5.
37. Gewirtz G, Squires-Wheeler E, Sharif Z et al. Results of computerised tomography during first admission for psychosis. *Br J Psychiatry* 1994; **164**: 789–95.
38. Walterfang M, Wood SJ, Velakoulis D et al. Diseases of white matter and schizophrenia-like psychosis. *Aust N Z J Psychiatry* 2005; **39**: 746–56.
39. Marder SR, Essock SM, Miller AL et al. Physical health monitoring of patients with schizophrenia. *Am J Psychiatry* 2004; **161**: 1334–49.
40. Goff DC, Cather C, Evins AE et al. Medical morbidity and mortality in schizophrenia: guidelines for psychiatrists. *J Clin Psychiatry* 2005; **66**: 183–94.
41. American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists et al. Consensus development conference on antipsychotic drugs and obesity and diabetes. *Diabetes Care* 2004; **27**: 596–601.
42. Citrome L. Current guidelines and their recommendations for prolactin monitoring in psychosis. *J Psychopharmacol* 2008; **22** (Suppl. 2): 90–7.
43. Goff DC. Integrating general health care in private community psychiatry practice. *J Clin Psychiatry* 2007; **68** (Suppl. 4): 49–54.