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1. Introduction 

The hippocampus and amygdala are subcortical structures of relevance in many neuroimaging studies. The task of segmenting 
these structures is crucial in such studies, for example, in order to understand the association between alterations in anatomy of the 
hippocampus and amygdala and neurodevelopmental disorders (Hajek et al, 2009; Dager et al, 2007; Frodi et al, 2010; Kesler et al, 2004). 
Similarly, neuroimaging studies in neurodegenerative diseases such as Alzheimer’s disease and other types of dementia have illuminated 
the role of the amygdala (Lehmann et al, 2010; Pinkhardt et al, 2006) in its neuropathology.  In addition, the hippocampus has been shown 
to be crucial to the understanding of several other neuro-developmental and degenerative diseases such as schizophrenia, Alzheimer’s, 
dementia, and epilepsy (Chupin et al, 2007; Collins & Pruessner, 2010; Dill et al, 2015; Lötjönen et al, 2015; Inglese et al, 2015) 
 

Due to the importance of these structures, numerous methods have been proposed for their automatic segmentation (Chupin et 
al 2007; Hanson et al, 2012; Hu et al, 2011). However, manual segmentation though is still employed in most neuroimaging studies as 
current automatic methods result in segmentations that are often judged as not fully appropriate without further correction. The major 
difficulty to automatic segmentation is the lack of significant contrast in several regions in the hippocampus and amygdala, particularly 
where they both border each other. The problem is exacerbated in pediatric scans where the contrast between white and gray matter, as 
well as between hippocampus and amygdala is further reduced. Historically, surface model-based and single atlas methods have been 
employed most frequently, though they have also been found to need significant manual correction for improvement (Morey et al, 2009; 
Schoemaker et al, 2016). Recently, multi-atlas approaches have started to yield significantly improved automatic segmentations in 
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comparison to prior methods in. (Alijabar et al, 2009; Gholipour et al, 2012; Hanson et al, 2012; Lötjönen et al, 2010; Rohlfing et al, 
2003; Wang et al, 2014). These multi-atlas based segmentation methods have provided significant inroads towards anatomically 
acceptable segmentation of these structures and are now increasingly employed in neuroimaging studies in adults (Lötjönen et al, 2010), 
though no application to the neonate setting has been shown yet. 

In this paper, we focus on MR images from neonate subjects, where the lack of contrast and signal-to-noise ratio is pronounced. 
As a result, few neuroimaging studies of neonatal amygdala and hippocampus anatomy (Buss et al, 2012; Thompson et al, 2008) exist. 
The low contrast seen in this setting can be attributed to the low degree of myelination in white matter abutting the hippocampus. Manual 
segmentations of those neonatal structures are thus common, but highly time-consuming, taking hours to complete from scratch. Such 
manual segmentations also have relatively high intra-rater and inter-rater variability. Consequently, automatic methods with a high degree 
of segmentation quality would be desirable to alleviate these issues. This paper presents one such segmentation method in the neonate 
MRI setting using a multi-modality, multi-atlas approach that shows reliability, stability and appropriate accuracy in a study featuring 89 
neonate subjects. It is worthwhile to note that the method presented here is publically available, both the tools and atlases. 

 
2. Materials and Methods 

 
2.1 Subjects 
 

Infant neuroimaging was approved by the Institutional Review Board of the University of California at Irvine, and all parents 
provided informed, written consent. All of the 89 infants evaluated in this study were from healthy pregnancies with no major obstetric, 
birth or current health complications. Gestational age was determined by best obstetric estimate with a combination of last menstrual 
period and early uterine size, and was confirmed by obstetric ultrasonographic biometry before 15 weeks using standard clinical criteria 
(O'Brien et al., 1981). The mean gestational age at birth was 39.1 ± 1.6 (±SD) weeks and ranged from 34.4 to 41.9 weeks. The mean 
postnatal infant age at assessment was 25.5 ± 12.2 (±SD) days and ranged from 5 to 56 days.  
 
2.1.1 MRI Acquisition 
 

MRI scans were acquired during natural sleep using a 12-channel head receive coil on a 3T Siemens Tim Trio scanner. After 
feeding and soothing to the point of sleep, neonates were placed in a CIVCO beaded pillow (www.civco.com).  The pillow covered the 
neonates’ body and head, became rigid under vacuum, and provided a comforting swaddle, motion prevention and hearing protection in 
conjunction with foam earplugs. A pediatric specialist observed the neonates throughout the duration of scans, monitoring for heart rate 
and oxygen saturation via a pulse-oximeter attached to the foot. The entire protocol included T1-weighted, T2-weighted, diffusion tensor 
and functional imaging of the brain. The high-resolution anatomical scans consisted of a T1-weighted (MPRAGE, TR/TE/TI= 2400/ 3.16/ 
1200ms, Flip Angle=8 degrees, Matrix= 256x256x160, Resolution=1x1x1mm, 6m 18s) and T2-weighted (TSE, TR/TE=3200/255ms, 
Matrix= 256x256x160, Resolution=1x1x1mm, 4m 18s) scan.  
 
2.1.2 Multi-Atlas Population 
 

We used a neonate multi-atlas population dataset consisting of 8 subjects with good image quality selected from the subject data 
described above. These subjects were manually segmented without prior starting segmentation by an expert rater at the UNC Neuro Image 
Research and Analysis Lab (CD) in a hippocampal long-axis aligned view. In order to allow for unbiased asymmetry analysis, all 8 subject 
MRIs and segmentation data were mirrored, resulting in an overall multi-atlas population of 16 atlases. This atlas has been made publically 
available (see resource section). 
	
2.1.3 Subjects for Reliability Analysis 
 

The segmentation reliability of the automatic multi-atlas segmentation was evaluated with 6 datasets consisting each of 2 scan 
sets acquired at the same scanning visit. The six subjects were selected from the subject population described above (2 subjects), as well 
as another 4 subjects from the UNC early brain development database (Gilmore et al, 2012).  All scans were acquired on 3T Siemens Tim 
Trio scanners at UNC and UCI. For these subjects a second set of T1weighted and T2weighted scans were acquired in the same scanning 
session, as the first set was considered of borderline quality by the scanning technicians. In all these cases, subsequent quality control 
procedures by a trained image analysis expert (MAS) showed all scans to pass quality assessment for structural morphometric analysis. 
This small size neonate scan-rescan database captures the low signal-to-noise setting and the presence of motion very common in early 
postnatal scans. It is thus well suited to estimate the reliability of image processing procedures of neonate MRI data. As mentioned, at 
least half of these images for each scan session were assessed to be of borderline quality by the scanner personnel, and thus this scan-
rescan evaluation is likely to overestimate the expected variability as compared to the average scan setting.  
 
2.2 Multi-Modality Multi-Atlas Segmentation 
 

Employing our automatic segmentation pipeline tool AutoSeg, we applied the following processing to the data: 1) 
inhomogeneity correction via N4 (Tustison, et al 2010), 2) rigid registration to a prior neonate atlas in ICBM space, 3) atlas moderated 
Expectation Maximization optimization based tissue classification for automatic skull stripping via ABC, 4) skull stripping using the 
tissue segmentation result from step (3) and finally 4) multi-atlas based structural segmentation (Wang, et. al 2014). Before running step 
(4), we manually correct all automatic brain masks employing the T1weighted image with a standard protocol removing only skull and 
exterior regions, while keeping other regions, such as the cerebellum and extra-axial CSF regions intact. During the multi-atlas 
segmentation step all atlases and subject MRI images are pair-wise co-registered, intensity and shape based similarity metrics are 
computed between scans and atlases, and a weighted majority voting based label fusion employing these metrics creates the final 



segmentation (Wang, et. al 2014). In order to compute an automatic segmentation that is unbiased with respect to the cerebral hemisphere, 
we incorporated left-right mirrored versions of all atlas datasets, which in turn also duplicates the number of available atlases. 
 
2.3 Manual Correction of Segmentations 
 

The automatic segmentation results were edited via manual outlining on the T1 weighted image in all three orthogonal slice 
directions using the ITK-Snap (Yushkevich et al., 2006) segmentation tool. For the purpose of improved visual presentation during the 
manual correction, the data was first realigned such that the hippocampal long axis coincided with the anterior-posterior axis (see Figure 
1). After manual editing, the inverse transform was applied to the edited segmentations to bring them back into neonate ICBM space.  
As a way to test for a possible asymmetric rater bias, the multi-atlas segmentation is applied to the subject data presented in original 
orientation and to the same data but mirrored along the left-right axis 

To assess intra and inter-rater variability, 5 subjects were randomly selected and triplicated for a total of 15 scans that were 
segmented by two raters (MS, KNZC). For the assessment of the automatic segmentation, a single rater segmented all 89 datasets (KNZC). 

The appendix shows details of the manual editing process on the example of the right hippocampus. The rater begins in the axial 
plane through each slice of the brain image to search for voxels that are missing or incorrectly labeled from the segmentation in its 2D 
representation. If the rater identifies a voxel that needs to be removed or added, the rater assessed that voxel in the 3D rendering and along 
each of the three slices. After going through the axial plane, the rater continues the same method through the sagittal and coronal planes. 
As both hippocampus and amygdala are considered smoothly shaped, a smooth appearance was favored in this editing process, unless 
clear evidence to the contrary was present in the image. 

 
2.4 Evaluation Metrics 
 
2.4.1 Coefficient of Variance 
 

The two trained human raters segmented each reliability dataset in its original and left-right mirrored presentation. The average 
coefficients of variance (COV) for all amygdala and hippocampal volume measurements were determined for each rater individually and 
then averaged over all raters. Coefficient of variance (standard deviation / mean value) explains the extent of variability between 
segmentations in relation to the average volume. 

 
2.4.2 Intra-Class Correlation and Inter-Class Correlation 
 

 
Fig 1. Automatic and manual segmentation of the hippocampus and amygdala performed on the hippocampal long-axis aligned MR images in ITK-SNAP (here 
shown with the T1-weighted image). Arrows indicate areas of manual editing. The hippocampi are is labeled red (right) and green (left), the amygdalae are 
labeled blue (right) and pink (left). 
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Intra-class as well as inter-class correlations were computed for both raters. Inter-class correlation is defined as the degree of 
agreement in volume of the edited segmentations between raters. Intra-class correlation is defined as the degree of agreement of multiple 
edited segmentations for a single rater. 
 
 2.4.3 Volumetric Overlap and Surface Distance (Mean/Max) 
 

We assessed the performance of the multi-atlas segmentation method by evaluating how closely shaped the resulting 
segmentation is to the corresponding manually edited (reference) segmentation. The most commonly used metric in the field is the Dice 
similarity coefficient (DSC), which is computed between two segmentations as:  
 

𝐷𝑆𝐶 = 2	𝑥	
𝑉)*+, ∩ 𝑉./0
𝑉)*+, + 𝑉./0

𝑥	100% 

 
where Vauto and Vref are the volume of the automated segmentation result and the volume of the reference segmentation, respectively. 
In our case, Vref represents the volume of the manually edited segmentation. A DSC of 1 indicates complete volumetric overlap, and 0 
indicates no overlap at all. We also employed the symmetric mean absolute distance (MAD) and the symmetric Hausdorff distance (Wang 
et al., 2009) between the surfaces of the resulting segmentation and the corresponding reference segmentation as additional metrics to 
evaluate the segmentation results. MAD is calculated by measuring the average distance from all points on the surface of the automatic 
segmentations to the surface of the reference one. In contrast, the symmetric Hausdorff distance computes the maximal distance between 
the surfaces. The smaller the MAD or Hausdorff distance, the better aligned the points on the two surfaces and thus the better the 
agreement with the reference segmentation. (Wang et al. 2014) 
 
2.5 Shape Analysis 
 

While the volumetric and overall surface analysis is enough to identify global differences between the automatic and manually 
edited segmentations, we also wanted to know if there were specific areas, which consistently need manual editing, and to what degree 
that is necessary and applied structural shape analysis for that purpose. We chose to focus on only the hippocampus because the amygdala 
has a blobby, almond like shape that does not lend itself well to local shape analysis. We performed the local hippocampal shape analysis 
via the SPHARM-PDM (Spherical Harmonics Point Distribution Models) analysis toolbox (Styner et al, 2006). SPHARM-PDM allows 
us to discover the local hippocampal areas that were consistently affected by the manual correction, across both raters and subjects by 
computing shape statistics at corresponding location along the hippocampal surface. 

After computation of corresponding surfaces with SPHARM-PDM, local hippocampal difference vector maps were computed 
between the hippocampal surface models from the automatic and manually edited segmentations. By projecting the local difference 
vectors to the local normal at the overall mean surface, the vectors were converted to scalar signed difference maps (Styner et al., 2005). 
Point-wise paired t-tests using MATLAB (MathWorks) were employed to calculate the statistical significance of the local signed 
difference at each location independently, resulting in raw significance maps. 

 
3. Results 

 
3.1 Evaluation of Manual Segmentation 
 
3.1.1 Reliability of Manual Segmentation 
 
 We computed the intra-class and inter-class correlation for the hippocampal and amygdala segmentations as seen in Table 1. 
Both within and across raters, we have reliable manual editing of the automatic segmentations. While the inter-class correlations were 
lower/worse than the intra-class correlations for the hippocampi, the inter CC and intra CC were close to 1 for the amygdalae. The inter-
class and intra-class correlations in the left and right amygdalae were practically the same. This surprising fact is due to significant lack 
of contrast in the amygdala such that little to no edits were completed. Overall, there is limited evidence whether the amygdala is accurate 
or inaccurate. This result mainly indicates that the MR scans show no evidence contrary to the automatic multi-atlas amygdala 
segmentation. In contrast the hippocampal boundaries show much stronger contrast and thus were edited more heavily. 



 
3.1.2 Cases with Significant Edits 

Few cases from automatic segmentations required extensive editing. Figure 2 shows the distribution of the manual edits. Both 
hippocampi and amygdalae were manually edited by a relative volumetric change between 1-4%.  Only 1.12% of left hippocampi and 
3.37% of left amygdalae needed more manual editing than 4% volumetric change.  
 
3.1.3 Asymmetric Presentation Bias of Manual Segmentation 
 

The average difference in volume for all structures segmented in standard radiological presentation versus segmented in a left-
right mirrored presentation is shown in Table 2. None of the structures showed a presentation related asymmetric bias, though the right 
hippocampus showed a limited trend (p = 0.070). Given the presence of a clear asymmetric presentation bias in purely manual 
segmentations (Maltbie et al, 2012), this result indicates that manual editing of automatic segmentations can reduce such a presentation 
bias. 
 
 

 
3.2 Evaluation of Automatic Segmentation 
 
3.2.1 Reliability and Stability of Automatic Segmentation 
 

Table 3 
Average volume differences of the hippocampus and amygdala between manual and automatic segmentations through 
raw (mm3) measurements, percent contribution, and significance of difference (results show manual – automatic). 

 Right 
Hippocampus 

Left 
Hippocampus 

Right 
Amygdala 

Left 
Amygdala 

Raw, 
mm3 -13.5 -16.8 -4.5 -4.6 

% -1.15% -1.48% -1.62% -1.74% 

P-value p<0.000001 p<0.000001 p<0.000001 p<0.000001 

Higher volumetric differences were observed for the left hippocampus than the right hippocampus (p=0.0003), i.e the left 
hippocampus underwent a significantly higher amount of editing as compared to the right. 

Table 4 
Coefficients of variation (COV) for the automatic amygdala hippocampus segmentations. 

 Right 
Hippocampus 

Left 
Hippocampus 

Right 
Amygdala 

Left 
Amygdala 

COV 0.25% 0.38% 0.22% 0.1% 

 

Table 2 
Average volume differences between original and mirrored presentation on the segmentations through 
raw measurement, percent contribution to the overall value and significance of the difference for the 
hippocampus and amygdala. 

 Right 
Hippocampus 

Left 
Hippocampus 

Right 
Amygdala 

Left 
Amygdala 

Raw, 
mm3 -1.2 0.2 0.2 0.1 

% -0.10% 0.01% 0.08% 0.03% 

P-
value 0.070 0.788 0.165 0.558 

None of the structures show a significant asymmetric bias due to presentation.  

Table 1 
Intra and inter-class correlations for manual amygdala and hippocampus segmentations. 

 Right 
Hippocampus 

Left 
Hippocampus 

Right 
Amygdala 

Left 
Amygdala 

Intra 
CC 0.994 0.996 0.998 0.999 

Inter 
CC 0.887 0.957 0.998 0.999 

Average volumes for right, left hippocampus and right, left amygdala were (1109.97mm3, 
1063.73mm3) (258.93mm3, 260.07mm3). Standard deviations for right, left hippo campus and right, 
left amygdala were (144.38, 135.57) (31.78, 31.82) 
 



COV’s were computed over the scan/rescan reliability dataset as seen in Table 4. Overall all structures showed a relatively low 
level of COV indicating a reliable segmentation as compared to fully manual segmentations of amygdala and hippocampus, which are 
expected to show COV values in the range of 3-6% (Styner et al., 2002). Thus, our automatic segmentations are appropriately reliable 
even in the neonate setting where the scans are of borderline quality. 

 
3.2.2 Evaluation of Manual Versus Automatic Segmentations 

All hippocampal and amygdala segmentations show a significant decrease in volume between manual and automatic 
segmentations as shown in Table 3. Overall, the automatic segmentation seems to over-segment both hippocampi and amygdalae. In 
addition, the left hippocampus segmentations showed a significantly higher decrease (p=0.0003, 0.33% larger volume change than the 
right hippocampus) in volume due to manual editing than the right hippocampus when comparing the automatic with the manual 
segmentation results. 

The average volume overlap error (dice coefficient), average overall surface error, and average maximum surface volume error 
are shown in Table 5 as a way to measure a shape-based, global agreement between the manual and automatic segmentations. Both left 
and right hippocampi and both left and right amygdalae display an almost complete volumetric overlap, with average surface errors in 
the 0.02mm range and maximum surface errors close to 2mm. These results indicate a high agreement between the automatic segmentation 
and the manual edits. 
 
3.3 Shape Analysis 
 
3.3.1 Average Difference 
 
  Local average difference magnitude maps are visualized color-coded on the mean hippocampus surface as seen in Figure 3 
(detailed maps from different viewpoints in Supplement Figure 1). Areas where the manual correction reduced the automatic 
segmentations are shown in orange and areas where the manual correction enlarged the automatic segmentation are color-coded in blue. 
Unchanged areas are shown in white. 

Automatic segmentations needed consistent editing in the head of the left and right hippocampi in the superior CA3 and CA1 
regions, where the maps show a large, significant reduction (raw p < 0.05) due to the manual correction as seen in Figure 4. There are 
also clusters of significant volume reductions after manual correction of the automatic segmentation in the superior subiculum of both 
left and right hippocampi.  Consistent editing is found in the inferior subiculum region such that the left and right hippocampus show 
areas of large, significant reduction after manual correction as well. 

Manual corrections in the superior subiculum of the left and right hippocampi resulted in larger volumes in these regions. 
Visually, the right hippocampus appears to show overall greater enlargement after manual correction in the superior subiculum around 
the body and tail as well as in the posterior subiculum in the head and body compared to the left hippocampus. 
 
 
  

 
Fig. 2. Significant edits of automatic segmentations of the amygdala and 
hippocampus. Degree of significance is ranked by relative volumetric change 
from 1-4%. 
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Table 5 
Manual versus automatic segmentation evaluation: average overall surface 
error, average maximum surface error, and average volume overlap. 

 Right 
Hippocampus 

Left 
Hippocampus 

Right 
Amygdala 

Left 
Amygdala 

Average 
Surface Error 

(mm) 
0.024 0.023 0.017 0.015 

Maximum 
Surface Error 

(mm) 
2.251 1.853 1.919 0.933 

Overlap/Dice 
Coefficient 

(%) 
98.852 98.855 99.143 99.067 

 



 
  

 

 
Figure 3. Local average difference magnitude maps (mm) between manual and automatic segmentations of the left 
and right hippocampus. Areas where the manual correction reduced the automatic segmentation are shown in 
orange and areas where manual correction enlarged. Top row is visualized from a superior-medial position and 
bottom row is visualized from an inferior-lateral position. 
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Figure 4.  Significance maps for editing changes (raw p < 0.05) of the automatic segmentations through manual 
correction of the left and right hippocampus via paired T-tests. Top row is visualized from a superior-medial 
position and bottom row is visualized from an inferior-lateral position. 
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3.3.2 Standard Deviation Difference 
 

Standard deviation differences are presented via color-coded maps visualized over the mean lateral hippocampus surface as seen 
in Figure 5. The left hippocampus overall showed significantly less variability than the right hippocampus, to a quite surprising degree. 
The manual editing is overall quite variable even on the left hippocampus with larger areas close or above 0.5mm standard deviation, and 
similar areas on the right hippocampus displaying standard deviations above 1.5mm. Particularly areas close to the hippocampus-
amygdala boundary and the tail section show high variability in edits. 

 
4. Discussion & Conclusion 

 
4.1 Manual Segmentations 
 

Our manual editing of the automatic segmentations of both hippocampus and amygdala showed to be reliable and consistent. It 
is important to keep in mind that the manual segmentations were performed starting from the automatic segmentation and not from scratch.  
Amygdalae segmentations for the most part remained untouched as limited sections of the amygdala boundary are clearly visible on these 
neonate MRI scans. Its contrast is significantly lower than in the hippocampus. This also means that the manual amygdala segmentations 
are more biased towards the automatic initialization than their hippocampal counterparts. Since the hippocampus has more contrast, it 
allows the rater to edit the segmentation more extensively while still being reliable.  

Given the findings in our prior research (Maltbie et al, 2012) of the presence of widespread asymmetric presentation biases in 
expert rater segmentations, we were surprised to find no significant evidence of such a bias in our manual editing process of either 
structure. The amount of manual editing needed here seems to be too limited in order for the method to be sensitive to this bias. 

 
4.2 Automatic Segmentations 
 

Our automatic segmentations for all structures show to be reliable even in scans considered borderline in the neonate setting. 
But, we find that the automatic segmentation seems to consistently, slightly over-segment both hippocampi and amygdalae.   

We found good localized agreement between the manual segmentations and automatic segmentations. We find that the left and 
right hippocampus and amygdale structures display an almost complete volumetric overlap and low surface errors. For the hippocampus 
this indicates that the automatic segmentations can be considered anatomically appropriate in the low contrast neonate setting. As 
mentioned before, the low error for the amygdala segmentations may not necessarily mean that our automatic segmentation yields 
anatomically accurate amygdala. Amygdala segmentations in neonate MR images are extremely difficult due to the poor tissue contrast 
and the present results indicate that segmentation cannot be significantly further improved by manual editing. It is important to note 
though that there is no evidence for our automatic multi-atlas amygdala segmentation being inaccurate.  

 
Figure 5. Standard deviation differences (scale in mm) visualized via color-coded maps over the mean lateral hippocampus surface. The left 
hippocampus STD overall variability is from (0-0.50) while the right hippocampus STD variability is from (0-1.25). 
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Only few cases required extensive editing following automatic segmentation. While we did not detect any significant asymmetric 
presentation bias, the left hippocampus undergoes a higher degree of editing than the right hippocampus. This indicates that while our 
automatic segmentation method is symmetric (due to the use of original and mirrored presentation atlas images) the results of the methods 
are slightly, but significantly more accurate on the right than on the left hippocampus. 

 
4.3 Shape Analysis 
 

Several areas in the hippocampus needed consistent editing following the automatic segmentation process. Surprisingly, given 
the higher degree of editing, the left hippocampus seems to have less editing variability across subjects than the right with respect to the 
editing. While overall more regions were over-estimated by the automatic segmentation, a few were also consistently under-estimated. 
This seems to indicate that a further automatic post-processing could further improve the segmentation, e.g. via the trained correction 
proposed by Wang et al. 2010. 
 
4.4 Conclusion 
 

Here, we show that an automatic segmentation process for the amygdala and hippocampus that is reliable and works well with 
neonatal MRI scans. We find that manual post-correction is not strictly necessary for appropriate anatomical accuracy of the hippocampus 
and amygdala. The findings on the amygdalae segmentations must be approached with some caution, both for the automatic and manual 
results, due to the lack of boundary contrast. We consider the results on the hippocampus to be strong. Our analysis also shows that while 
manual post-processing is not strictly necessary, it provides consistent differences in regions close to the neighboring regions of the 
amygdala and hippocampus and thus is expected to increase the accuracy of volume estimates further.  

The results presented here were all computed using the AutoSeg platform with the UNC-UCI Hippocampus-Amygdala multi-
atlas database. Alongside the UNC/UCI scan/rescan database employed in this work, these resources are all publically available on 
NITRC. 
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Figure 1. In the axial and saggital views, the rater performs manual correction through each slice. 
When a voxel appears to be outside of the boundary within the 2D view, the rater checks on the 
boundary in the 3D view. Once the rater confirms that the voxel is outside the boundary of the 
hippocampus, the rater manually removes the voxel from the automatic segmentation. When a 
voxel appears to be missing inside the boundary within the 2D view, the rater looks additionally for 
the missing voxel in the 3D view. Once the rater confirms that the addition of a voxel is needed 
within the boundary, the rater adds the voxel to the automatic segmentation. 
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Figure 2. Above shows the automatic segmentation before manual correction. Manual correction 
by the rater of the right hippocampus is shown below.  
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Figure 3. Right hippocampus boundaries 
overlaying T1-weighted neonate stripped 
skull brain scan. 


