HEMATURIA EVALUATION: AN OPPORTUNITY TO ENHANCE THE VALUE OF CARE?

Matthew E. Nielsen, MD, MS, FACS Urology, Epidemiology, Health Policy & Management University of North Carolina at Chapel Hill

CLINICAL GUIDELINE

Hematuria as a Marker of Occult Urinary Tract Cancer: Advice for High-Value Care From the American College of Physicians

Matthew Nielsen, MD, MS, and Amir Qaseem, MD, PhD for the High Value Care Task Force of the American College of Physicians

Background: The presence of blood in the urine, or hematuria, is a common finding in clinical practice and can sometimes be a sign of occult cancer. This article describes the clinical epidemiology of hematuria and the current state of practice and science in this context and provides suggestions for clinicians evaluating patients with hematuria.

Methods: A narrative review of available clinical guidelines and other relevant studies on the evaluation of hematuria was conducted, with particular emphasis on considerations for urologic referral.

High-Value Care Advice 1: Clinicians should include gross hematuria in their routine review of systems and specifically ask all patients with microscopic hematuria about any history of gross hematuria

High-Value Care Advice 2: Clinicians should not use screening urinalysis for cancer detection in asymptomatic adults.

High-Value Care Advice 3: Clinicians should confirm hemepositive results of dipstick testing with microscopic urinalysis that demonstrates 3 or more erythrocytes per high-powered field before initiating further evaluation in all asymptomatic adults.

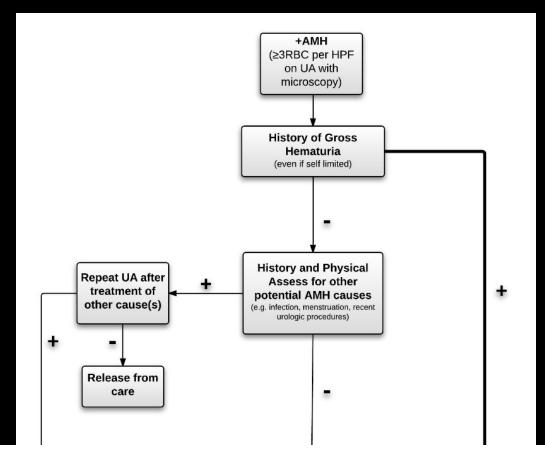
High-Value Care Advice 4: Clinicians should refer for further urologic evaluation in all adults with gross hematuria, even if self-limited.

High-Value Care Advice 5: Clinicians should consider urology referral for cystoscopy and imaging in adults with microscopically confirmed hematuria in the absence of some demonstrable benign cause.

High-Value Care Advice 6: Clinicians should pursue evaluation of hematuria even if the patient is receiving antiplatelet or anticoagulant therapy.

High-Value Care Advice 7: Clinicians should not obtain urinary cytology or other urine-based molecular markers for bladder cancer detection in the initial evaluation of hematuria.

Ann Intern Med. doi:10.7326/M15-1496 www.annals.org
For author affiliations, see end of text.
This article was published at www.annals.org on 26 January 2016.


Table 1. Organizational Recommendations for the Initial Evaluation of Average-Risk Patients With Asymptomatic Microscopic Hematuria

Recommendation	Year	Reference	Case Definition			Components of Evaluation		
			Dipstick	Microscopic Urinalysis Results, erythrocytes/ HPF	Positive/ Total Test Results, n/N	Age Threshold, y	Cystoscopy	Preferred Imaging Method
American Urological Association guideline	2012	12	Inadequate	≥3	1	≥35	All patients	CT urography
American Urological Association best practice policy	2001	16	Inadequate	≥3	2/3	≥40	All patients	CT urography or IVP/ ultrasonography
Canadian Urological Association guideline	2008	30	Inadequate	≥2	2	≥40	All patients	Renal ultrasonography
British Association of Urological Surgeons guideline	2008	32	≥1 heme	Not required	2/3	≥40	Not specified	Not specified
Dutch Guideline on Hematuria	2010	31	Inadequate	≥3	2/3	≥50	All patients	Renal ultrasonography

CT = computed tomography; HPF = high-powered field; IVP = intravenous pyelography.

Areas of uncertainty (Table 1)

- Age threshold for urology evaluation (35-50)
- Imaging modality of choice (CT for all vs. risk-stratified approach to CT vs. ultrasound for all)
- Nephrology evaluation as concurrent vs. alternative pathway

Limitations of Evidence

Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation

M Rodgers, J Nixon, S Hempel, T Aho, J Kelly, D Neal, S Duffy, G Ritchie, J Kleijnen and M Westwood

Health Technology Assessment 2006; Vol. 10: No. 18

American Urological Association (AUA) Guideline

DIAGNOSIS, EVALUATION and FOLLOW-UP OF ASYMPTOMATIC MICROHEMATURIA (AMH) IN ADULTS: AUA GUIDELINE

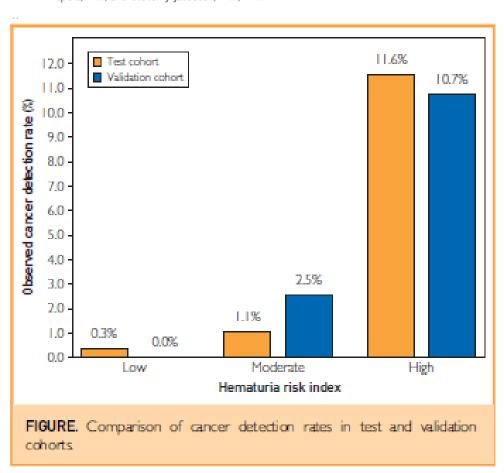
Rodney Davis, J. Stephen Jones, Daniel A. Barocas, Erik P. Castle, Erick K. Lang, Raymond J. Leveillee, Edward M. Messing, Scott D. Miller, Andrew C. Peterson, Thomas M.T. Turk, William Weitzel

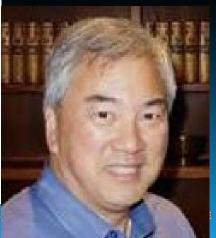
- Health Technology Assessment (2006, UK National Institute for Health Research)
 - 79 different diagnostic algorithms relevant to hematuria, <u>none</u> of which formally evaluated in terms of effect on patient outcomes
- 2012 AUA Guideline on AMH
 - None of 22 specific recommendations supported by evidence higher than Grade C

CLINICAL GUIDELINE

Hematuria as a Marker of Occult Urinary Tract Cancer: Advice for High-Value Care From the American College of Physicians

Matthew Nielsen, MD, MS, and Amir Qaseem, MD, PhD for the High Value Care Task Force of the American College of Physicians


- Uncertainty regarding indications for referral and components of evaluation identified as major gap in current practice / policy
- Concerns about harms of CT urogram
 - Major difference between guidelines
 - Substantially differential effectiveness / yield?
 - Highest radiation dose of common CT protocols
 - Harm>>benefit for large subgroups
 - Emerging evidence base supporting risk-stratified approach

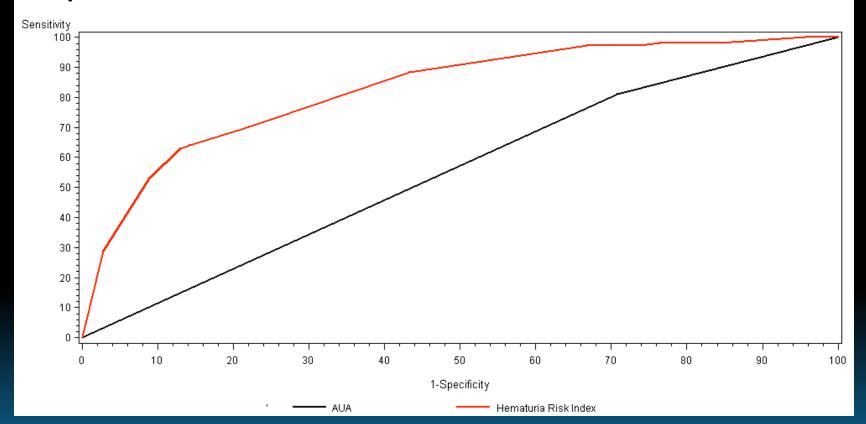


Stratifying Risk of Urinary Tract Malignant Tumors in Patients With Asymptomatic Microscopic Hematuria

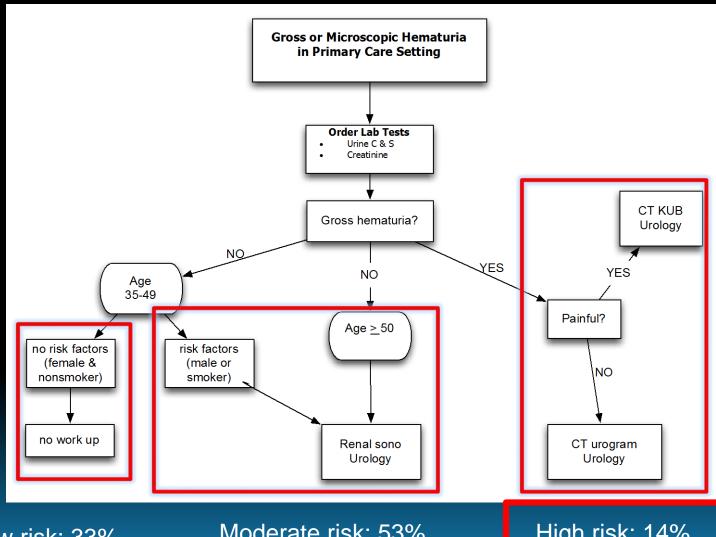
Ronald K. Loo, MD; Stephen F. Lieberman, MD; Jeff M. Slezak, MS; Howard M. Landa, MD; Albert J. Mariani, MD; Gary Nicolaisen, MD; Ann M. Aspera, MD; and Steven J. Jacobsen, MD, PhD

Stratifying Risk of Urinary Tract Malignant Tumors in Patients With Asymptomatic Microscopic Hematuria

Ronald K. Loo, MD; Stephen F. Lieberman, MD; Jeff M. Slezak, MS; Howard M. Landa, MD; Albert J. Mariani, MD; Gary Nicolaisen, MD; Ann M. Aspera, MD; and Steven J. Jacobsen, MD, PhD


- Overall cancer diagnosis: 2.9%
 - AUA Guidelines' pooled data analysis: 3.3%
- Upper tract findings:
 - Loo et al (n=4414): 0.3% RCC; zero upper tract TCC
 - Edwards et al (n=4020, 46.8% GH)
 - 3.7% bladder cancer, 1% RCC
 - 0.2% upper tract TCC (n=10; 7=GH, 3=NVH)
 - none in men <50, women <70

Area Under the Curve

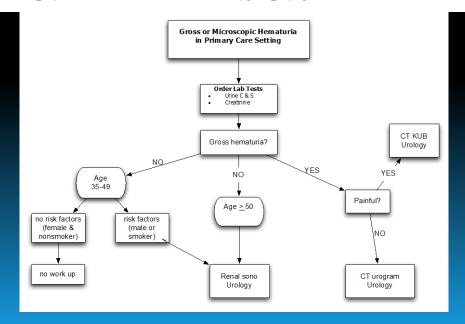

Comparison of ROC Curves for Hematuria Risk Index and AUA Guideline

KP Risk Index—Implemented 2012

Low risk: 33%

Moderate risk: 53%

High risk: 14%



What are the tradeoffs?

Table 1. Organizational Recommendations for the Initial Evaluation of Average-Risk Patients With Asymptomatic Microscopic Hematuria

Recommendation	Year	Reference	Case Definition			Components of Evaluation		
			Dipstick	Microscopic Urinalysis Results, erythrocytes/ HPF	Positive/ Total Test Results, n/N	Age Threshold, y	Cystoscopy	Preferred Imaging Method
American Urological Association guideline	2012	12	Inadequate	≥3	1	≥35	All patients	CT urography
American Urological Association best practice policy	2001	16	Inadequate	≥3	2/3	≥40	All patients	CT urography or IVP/ ultrasonography
Canadian Urological Association guideline	2008	30	Inadequate	≥2	2	≥40	All patients	Renal ultrasonography
British Association of Urological Surgeons guideline	2008	32	≥1 heme	Not required	2/3	≥40	Not specified	Not specified
Dutch Guideline on Hematuria	2010		Inadequate		2/3	≥50	All patients	Renal ultrasonography

CT = computed tomography; HPF = high-powered field; IVP = intravenous pyelography.

"A model is a lie that helps you see the truth."

Howard Skipper, PhD

Model-based comparison of alternatives

PATIENT CHARACTERISTICS

Hematuria Cohort studies

INITIAL ENCOUNTER

Clinical guidelines

POST-ENCOUNTER

Literature review

Assign:

- Sex
- Age
- Cancer status
- Cancer location
- History of gross hematuria
- Smoking status
- Urine RBC count

AUA

 All patients aged ≥ 35 years: cystoscopy + CT

Risk stratification (KP/HRI)

- Low risk: no further work-up
- Moderate risk: cystoscopy + renal ultrasound
- High risk: cystoscopy + CT

Canadian guidelines

 Patients aged ≥ 40 years: cystoscopy + renal ultrasound

Dutch guidelines

 Patients aged ≥ 50 years: cystoscopy + renal ultrasound

Assess outcomes:

- Costs
- Cancer detection rates
- Missed cancer cases
- False positive cases
- Short-term complications
 - Contrast allergy
 - Contrast nephropathy
 - Dysuria
 - UTI
- CT radiation-induced harms
 - Secondary cancers
 - Attributable deaths

Incremental cost-effectiveness results

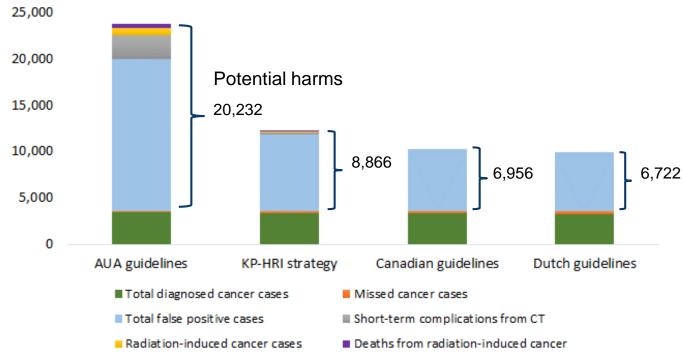
Cost-effectiveness of different evaluation strategies of AMH patients (N=100,000)

Guideline	Total costs to cohort	Cancer cases detected*	Incremental costs	Incremental cancer cases detected	ICER (cost per cancer case detected)
Dutch	\$42,470,698	3,234	-	-	-
Canadian	\$44,303,924	3,288	\$1,833,227	54	\$34,072
KP/HRI strategy	\$46,623,885	3,358	\$2,319,960	70	\$32,939
AUA	\$81,640,142	3,495	\$35,016,257	137	\$254,745

*Total number of detected cancer cases (bladder, renal, and ureteral/renal pelvis).

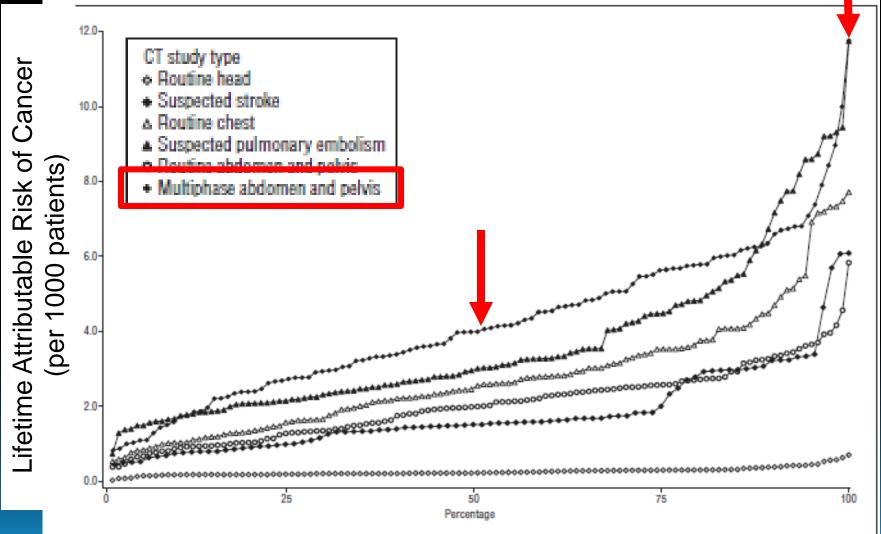
ICER - incremental cost-effectiveness ratio.

@mivlage

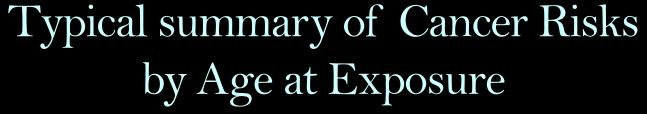


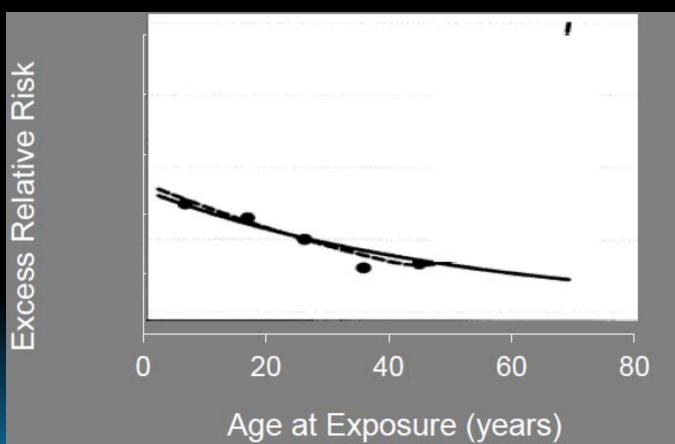
@StephWheelerUNC

Health economic outcomes for the simulated cohort (N=100,000)


	AUA	KP-HRI	Canadian	Dutch
	guidelines	strategy	guidelines	guidelines
Total diagnosed cancer cases	3,492	3,358	3,290	3,237
Missed cancer cases	26	160	228	281
Total false positive cases ^a	16,390	8,254	6,728	6,441
Short-term complications from CT	2,595	310	0	0
Radiation-induced cancer cases	780	91	0	0
Deaths from radiation-induced cancer	441	51	0	0
Total costs per patient ^b	\$1,159	\$507	\$443	\$424

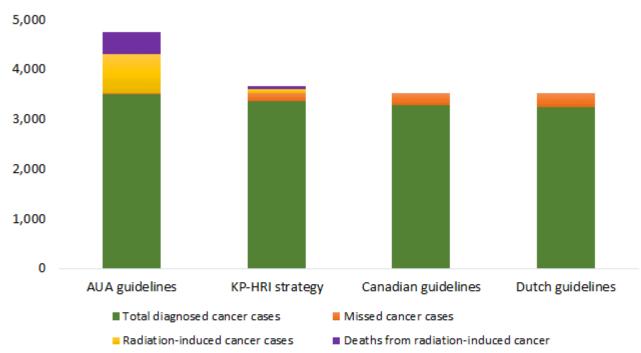
Note: KP-HRI - Kaiser Permanente recommendations using the Hematuria Risk Index ^aFalse positive cases from all test evaluations (CT, cystoscopy, renal ultrasound) ^bInitial evaluation costs of multiphase abdominal/pelvic CT,


Cancer risks are not trivial





Cancer Risk: Actually a <u>U-Shaped</u> Distribution



Health economic outcomes for the simulated cohort (N=100,000)

	AUA guidelines	KP-HRI strategy	Canadian guidelines	Dutch guidelines
Total diagnosed cancer cases	3,492	3,358	3,290	3,237
Missed cancer cases	26	160	228	281
Radiation-induced cancer cases	780	91	0	0
Deaths from radiation-induced cancer	441	51	0	0
Short-term complications from CT	2,595	310	0	0
Total false positive cases ^a	16,390	8,254	6,728	6,441
Total costs per patient ^b	\$1,159	\$507	\$443	\$424

Note: KP-HRI - Kaiser Permanente recommendations using the Hematuria Risk Index ^aFalse positive cases from all test evaluations (CT, cystoscopy, renal ultrasound) ^bInitial evaluation costs of multiphase abdominal/pelvic CT, renal ultrasound, and cystoscopy

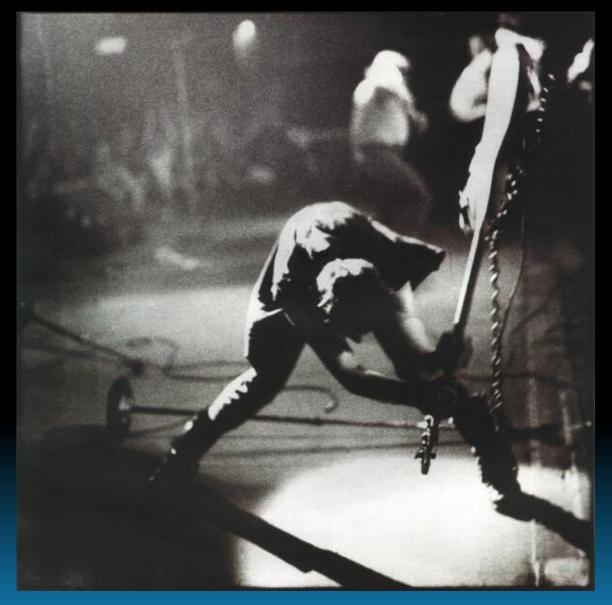
Medicine used to be simple, ineffective and relatively safe.

Now it is complex, effective, and potentially dangerous.

Sir Cyril Chantler,

Dean of Guy's Hospital, London

5.1 For each recommendation provide:


CLINICAL PRACTICE GUIDELINES WE CAN TRUST

NISTITUTE OF MEDICINE OF THE NATIONAL ACADEMIST

- A summary of relevant available evidence, description of the quality, quantity and consistency of aggregate available evidence
- A clear description of the potential benefits and harms
- An explanation of the part played by values, opinion, theory and clinical experience in deriving the recommendation
- A description of any differences of opinion regarding the recommendation

Acknowledgements

ACP High Value Care Task Force

Ron Loo and Casey Ng @caseyng1, Kaiser
 Permanente Southern California

Tullika Garg, Geisinger @Tullika_Garg

 Mathew Raynor @mcrunc1, Mihaela Georgieva @mivlage, Daniel Erim, and Stephanie Wheeler @StephWheelerUNC, @corp_unc

Thank You

Email: mnielsen@med.unc.edu

: @m_e_nielsen

