Skip to main content

Mass Spectrometry

Advanced Translational Pharmacology and Analytical Chemistry (ATPAC)

The Advanced Translational Pharmacology and Analytical Chemistry (ATPAC) core lab consists of the Analytical Chemistry and Pharmacology Core (ACPC) lab and the Translational Oncology and Nanoparticle Drug Development Initiative (TONDDI) lab

The ATPAC core lab uses analytical chemistry and pharmacologic infrastructure to support the translational development of drugs, anticancer agents, carrier-mediated agents and biologics. The lab provides expertise in translational drug development, analytical chemistry, pharmacology [pharmacokinetic (PK) and pharmacodynamic (PD); efficacy and toxicity], and biomarker studies.

Research applications:  Services include LC-MS assay development, validation and analysis of samples to quantify a wide variety of drugs, ranging from small molecule therapeutics to complex drugs such as monoclonal antibodies, drug conjugates and polymers. The lab supports formulation development and CMC studies, assistance in PK/PD study design, LC-MS/MS or ICP-MS assay development, quantification of drugs from biological samples, PK/PD analysis and report generation.

Instrumentation available:  Thermo TSQ Quantum Ultra triple quadrupole mass spectrometers with Shimadzu LC-20AD series HPLC, Thermo LTQ Orbitrap Discovery mass spectrometer with Shimadzu LC-20AD series HPLC, Agilent 7700 inductively-coupled plasma mass spectrometer (ICP-MS), Shimadzu 20 series HPLC with fluorescence detection.

Resources: Full-service sample analysis and assay development.  Consultation on PK/PD study design and execution.  Data interpretation and preparation of manuscripts.

Eligible users:  Researchers at UNC-CH, other academic institutions, industry/commercial clients.

Biomarker Mass Spectrometry (BMS)

The Biomarker Mass Spectrometry Facility provides expertise for qualitative and quantitative analysis of small molecular weight biomarkers including nucleic acids, peptides, and metabolites. In addition to LC/MS/MS analyses, we offer HPLC with UV detection and trace elemental analysis by ICP-MS. Areas of focus for the facility have included DNA and protein adducts as markers of chemical exposure, oxidative stress, and endogenous DNA damage, characterization of chemical reaction products, identification and quantitation of metabolites, multi-element analysis and arsenic speciation. The services and analyses performed within the facility enable UNC investigators to study the molecular mechanisms of environmentally based diseases as well as the relationships between genetic and environmental factors.

Research applications: Targeted quantitation of biomarkers of exposure and effect including DNA adducts, protein adducts, DNA-DNA and DNA-protein crosslinks, metabolites, and metals; Unbiased differential mass profiling; HPLC purification of reaction mixtures; Molecular weight and structural characterization of synthetic standards.

Instrumentation: Sciex 6500 triple quad mass spec with Eksigent nanoLC; Thermo TSQ Quantum Ultra triple quad mass spec with Waters NanoAcquity UPLC; Thermo TSQ Quantum Ultra triple quad mass spec with Waters Acquity UPLC; Agilent 6520 Accurate-Mass Quadrupole Time-of-Flight mass spec with Agilent 1200 Rapid Resolution LC; Agilent 7500cx ICP-MS Inductively Coupled Plasma mass spec with Agilent 1260 Infinity Bioinert HPLC; Agilent 1200 HPLC for offline purification and fraction collection.

Resources: Full service sample analyses as well as training for independent operation; Consultation for proposal submission and/or project feasibility; Method development; Data interpretation and generation of experimental sections and figures for publications. Fees are based on hourly usage of instrumentation and staff time, so costs correlate with the degree of effort required and the duration of analyses.

Eligible users: UNC researchers as well as other academic investigators and commercial clients when feasible.

Department of Chemistry Mass Spectrometry Core Laboratory

The Department of Chemistry Mass Spectrometry Core Laboratory specializes in small molecule mass spectrometry analysis. Our Core aims to provide the highest quality mass spectrometric services possible to both campus and surrounding Research Triangle area members. We offer both independent operator and full-service mass spectrometry workflows. Our primary research focuses are organic and inorganic synthetic molecules, relative and absolute quantitation mass spectrometry, and trace metal analysis.

Research applications: quantitative mass spectrometry, liquid chromatography separations, structural elucidation, MS/MS & MSn fragmentation mass spectrometry, complex mixture analysis, molecular formula confirmation, high resolution and accurate mass analysis, & trace metal determination/quantitation.

Instrumentation available: ThermoFisher Exactive GC, ThermoFisher LTQ FT with a Waters Acquity H-Class UPLC system, PESciex 3000 with a Shimadzu LC and CTC autosampler, Agilent 1100 liquid chromatograph system, CEM Mars Microwave System

Resources: Individualized user training for undergraduate, graduate, and post-doctoral scholars of the Department of Chemistry and UNC Campus community. Walk-up access is available to all trained users. Full-service sample analysis. Consultation for project development. Method development and advising. Data interpretation. Grant application assistance. Metabolomics and Lipidomics.

Eligible users: All researchers at UNC-CH, affiliated universities, non-affiliated universities, private industry/commercial clients.

Proteomics

UNC Metabolomics and Proteomics (MAP) Core

UNC Metabolomics and Proteomics (MAP) Core  provides researchers with state-of-the-art analysis of proteins from tissues, cells and other biological samples. The Center is also a resource for hands-on-training, education, and consultation in modern proteomics techniques. The Center offers an array of sample preparation and instrumentation services, as well as method development and in-depth consultation to help researchers optimize their experimental design.

Research applications: Identify purified proteins and co-immunoprecipitated proteins. Identify proteins in from complex mixtures and quantify differences in protein abundance using labeled (SILAC, TMT) or label-free approaches. Identify of post-translational modifications such as acetylation, ubiquitylation, phosphorylation and sulfhydryl modifications. Determine the exact mass of purified peptides and proteins.

Instrumentation available: Thermo Easy nLC 1000; Thermo QExactive HF mass spectrometer; Waters nanoAcquity; Thermo LTQ-Orbitrap Velos mass spectrometer; Sciex 5800 MALDI-TOF/TOF mass spectrometer

Training resources: Individualized training is available for the use of the MALDI-TOF/TOF instrument and data analysis using Protein PilotTM software.

Eligible users: Researchers at UNC and other academic institutions or industrial laboratories.

Lipidomics

Department of Chemistry Mass Spectrometry Core Laboratory

The Department of Chemistry Mass Spectrometry Core Laboratory specializes in small molecule mass spectrometry analysis. Our Core aims to provide the highest quality mass spectrometric services possible to both campus and surrounding Research Triangle area members. We offer both independent operator and full-service mass spectrometry workflows. Our primary research focuses are organic and inorganic synthetic molecules, relative and absolute quantitation mass spectrometry, and trace metal analysis.

Research applications: quantitative mass spectrometry, liquid chromatography separations, structural elucidation, MS/MS & MSn fragmentation mass spectrometry, complex mixture analysis, molecular formula confirmation, metabolomics and lipidomics, high resolution and accurate mass analysis, & trace metal determination/quantitation.

Instrumentation available: ThermoFisher Exactive GC, ThermoFisher LTQ FT with a Waters Acquity H-Class UPLC system, PESciex 3000 with a Shimadzu LC and CTC autosampler, Agilent 1100 liquid chromatograph system, CEM Mars Microwave System

Resources: Individualized user training for undergraduate, graduate, and post-doctoral scholars of the Department of Chemistry and UNC Campus community. Walk-up access is available to all trained users. Full-service sample analysis. Consultation for project development. Method development and advising. Data interpretation. Grant application assistance. Metabolomics and Lipidomics.

Eligible users: All researchers at UNC-CH, affiliated universities, non-affiliated universities, private industry/commercial clients.

Metabolomics

Department of Chemistry Mass Spectrometry Core Laboratory

The Department of Chemistry Mass Spectrometry Core Laboratory specializes in small molecule mass spectrometry analysis. Our Core aims to provide the highest quality mass spectrometric services possible to both campus and surrounding Research Triangle area members. We offer both independent operator and full-service mass spectrometry workflows. Our primary research focuses are organic and inorganic synthetic molecules, relative and absolute quantitation mass spectrometry, and trace metal analysis.

Research applications: quantitative mass spectrometry, liquid chromatography separations, structural elucidation, MS/MS & MSn fragmentation mass spectrometry, complex mixture analysis, molecular formula confirmation, metabolomics and lipidomics, high resolution and accurate mass analysis, & trace metal determination/quantitation.

Instrumentation available: ThermoFisher Exactive GC, ThermoFisher LTQ FT with a Waters Acquity H-Class UPLC system, PESciex 3000 with a Shimadzu LC and CTC autosampler, Agilent 1100 liquid chromatograph system, CEM Mars Microwave System

Resources: Individualized user training for undergraduate, graduate, and post-doctoral scholars of the Department of Chemistry and UNC Campus community. Walk-up access is available to all trained users. Full-service sample analysis. Consultation for project development. Method development and advising. Data interpretation. Grant application assistance. Metabolomics and Lipidomics.

Eligible users: All researchers at UNC-CH, affiliated universities, non-affiliated universities, private industry/commercial clients.

UNC Metabolomics and Proteomics (MAP) Core

UNC Metabolomics and Proteomics (MAP) Core  provides researchers with state-of-the-art analysis of proteins from tissues, cells and other biological samples. The core is affiliated with the UNC Nutrition Obesity Research Center (NORC) and the Lineberger Comprehensive Cancer Center (LCCC) and is also a resource for hands-on-training, education, and consultation in modern proteomics techniques. The MAP Core offers an array of sample preparation and instrumentation services, as well as method development and in-depth consultation to help researchers optimize their experimental design.

Research applications: Identify purified proteins and co-immunoprecipitated proteins. Identify proteins in from complex mixtures and quantify differences in protein abundance using labeled (SILAC, TMT) or label-free approaches. Identify of post-translational modifications such as acetylation, ubiquitylation, phosphorylation and sulfhydryl modifications. Determine the exact mass of purified peptides and proteins.

Instrumentation available: Thermo Easy nLC 1000; Thermo QExactive HF mass spectrometer; Waters nanoAcquity; Thermo LTQ-Orbitrap Velos mass spectrometer; Sciex 5800 MALDI-TOF/TOF mass spectrometer

Training resources: Individualized training is available for the use of the MALDI-TOF/TOF instrument and data analysis using Protein PilotTM software.

Eligible users: Researchers at UNC and other academic institutions or industrial laboratories.

Metabolomics and Exposome Laboratory

Located in Kannapolis, NC, the Metabolomics and Exposome Core Laboratory encourages collaborations that promote the use of untargeted and broad-spectrum metabolomics in basic, clinical, and translational research focused on environmental health and precision nutrition. Specific services include consultation and proposal development, untargeted sample analysis using UPLC, Mass Spectrometry, and NMR, cytokine arrays, and targeted services for the Choline Metabolic pathway.