Rita Tamayo, PhD

Associate Professor
6206 Marsico Hall
CB#7290
919-843-2864

Research

The Tamayo Lab studies how facultative pathogenic bacteria adapt to disparate and changing extracellular conditions. Specifically, we are interested in a bacterial second messenger that transmits signals received at the cell surface to control a wide variety of adaptive responses. This signaling molecule, c-di-GMP, is ubiquitous in bacteria and regulates the switch between motile and non-motile lifestyles in many species. In many cases, the non-motile phase involves development of a microbial community called a biofilm. In some bacterial pathogens, c-di-GMP regulates virulence factor production as well.

C. difficile is a Gram-positive, spore-forming, obligate anaerobe that causes a spectrum of intestinal diseases. C. difficile diseases are among the most commonly acquired nosocomial infections in the developed world. Treatment of C. difficile infections costs more than $3 billion per year in the U.S. alone. C. difficile produces well-characterized cytotoxins that damage the intestinal epithelium, resulting in inflammation and diarrheal symptoms. Yet little is known about how this organism senses its entry into the host and adapts to the intestinal environment. We aim to determine if and how c-di-GMP influences C. difficile colonization of the host intestine and development of disease. We have generated tools for manipulating c-di-GMP levels in C. difficile and have identified numerous pathways regulated by c-di-GMP. These processes include flagellum-based swimming motility, cytotoxin production, pilus-mediated surface motility, and cell-cell adhesion, suggesting a fundamental role for c-di-GMP in the ability of C. difficile to colonize and cause disease in the intestine. We are currently investigating the molecular basis of c-di-GMP regulation of these various pathways and the impact of c-di-GMP signaling on C. difficile virulence. In addition, we are dissecting the c-di-GMP signaling pathway by evaluating the contribution of individual components (i.e., c-di-GMP synthases and hydrolases) to controlling c-di-GMP—regulated processes and by identifying the extracellular stimuli that influence intracellular c-di-GMP levels.

Clostridioides (also Clostridium) difficile is a Gram-positive, spore-forming, obligate anaerobe that causes a spectrum of intestinal diseases. C. difficile diseases are among the most commonly acquired nosocomial infections in the developed world. Treatment of C. difficile infections costs more than $3 billion per year in the U.S. alone. C. difficile produces well-characterized cytotoxins that damage the intestinal epithelium, resulting in inflammation and diarrheal symptoms. Yet little is known about how this organism senses and adapts to the host intestinal environment. The Tamayo Lab is interested in identifying and characterizing the regulatory mechanisms employed by C. difficile to colonize, survive, and cause disease in a host.

1) The intracellular signaling molecule cyclic diguanylate (c-di-GMP) transmits signals received at the cell surface to control a wide variety of adaptive responses. Most notably, c-di-GMP regulates the switch between motile and non-motile lifestyles in many species. We aim to determine if and how c-di-GMP influences  difficilecolonization of the host intestine and development of disease. We have generated tools for manipulating c-di-GMP levels in C. difficile and have identified numerous pathways regulated by c-di-GMP. These processes include flagellum-based swimming motility, toxin production, pilus-mediated surface motility, and cell-cell adhesion, suggesting a fundamental role for c-di-GMP in the ability of C. difficile to colonize and cause disease in the intestine. We are currently investigating the molecular basis of c-di-GMP regulation of these various pathways and the impact of c-di-GMP signaling on C. difficile virulence. In addition, we are dissecting the c-di-GMP signaling pathway by evaluating the contribution of individual components (i.e., c-di-GMP synthases and hydrolases) to controlling c-di-GMP—regulated processes and by identifying the extracellular stimuli that influence intracellular c-di-GMP levels.

2) Phase variation is a means by which many bacterial species introduce phenotypic heterogeneity into the population as a strategy to ensure the population’s survival in the face of changing selective pressures. Phase variation occurs in a heritable, reversible manner and typically modulates the ON/OFF production of factors affecting environmental adaptation. These factors are typically surface components that directly interact with the environment, such as fimbriae, flagella, and extracellular carbohydrates. Numerous mucosal pathogens employ phase variation to control the biosynthesis of virulence factors that may be immunostimulatory, thereby promoting immune evasion and persistence in a host. In difficile, up to seven loci are subject to phase variation via site-specific DNA recombination. These loci are each preceded by an invertible DNA element, or “switch”, that depending on its orientation determines whether the downstream genes are expressed. Of particular interest are four phase variable loci connected to c-di-GMP signaling: the c-di-GMP regulated flagellar operon, a c-di-GMP regulated signal transduction system operon, and two c-di-GMP hydrolase genes. We aim to determine the mechanisms of switch inversion, how the orientation of the switches controls gene expression, the conditions that influence phase variation, and the impact of phase variation on disease outcome. These studies are tackling fundamental questions about the phenotypic heterogeneity that arises in a C. difficile population, including the molecular basis and phenotypic outcomes of c-di-GMP signaling and phase variation in vitro and during infection.

The Tamayo Lab is committed to providing scientific and career mentoring in an inclusive research environment. Please contact Dr. Tamayo regarding availability of doctoral and postdoctoral research opportunities.

Please visit us our website at TamayoLab.com

And follow us on Twitter @TamayoLab!

Publications

Full List of Publications