Education and Training:
University of North Carolina at Chapel Hill, BS
University of California San Diego, PhD
Massachusetts General Hospital/Harvard, Postdoc
Areas of Interest:
Appropriate allocation of cellular lipid stores is paramount to maintaining organismal energy homeostasis and is coordinated by a network of multi-tissue endocrine signals. Dysregulation of these pathways can manifest in human metabolic syndromes, including cardiovascular disease, obesity, diabetes, and cancer. The goal of my lab is to elucidate the molecular mechanisms that govern the storage, metabolism, and intercellular transport of lipids; as well as understand how these circuits interface with other cellular homeostatic pathways (e.g., growth and aging). We utilize C. elegans as a model system to interrogate these evolutionarily conserved pathways, combining genetic approaches (forward and reverse genetic screens, CRISPR) with genomic methodologies (ChIP-Seq, mRNA-Seq, DNA-Seq) to identify new components and mechanisms of metabolic regulation.