Skip to main content

Viral infection poses a never-ending threat to human health. It is nearly impossible to predict the next viral outbreak of concern because of the ever-evolving nature of viruses and the potential for new human pathogens to originate in non-human members of the animal kingdom. Readiness for a viral epidemic of unknown etiology requires broad-spectrum, antiviral therapeutics and universal strategies for viral attenuation, for example strategies based on attenuating changes to the activity of a conserved viral enzyme. Our laboratory has had a longstanding interest in discovering fundamental biological knowledge relevant to the treatment and/or prevention of viral infection.

The era of biology on the single-cell level is well underway, and we have become a standard-bearer for “single-cell virology.” Currently, most studies emphasize the between-cell variability of populations in terms of gene expression. Even those studies with viral infection as the focus emphasize end-point differences in yield of virus or viral nucleic acid. No doubt there is much to learn from these studies. However, there is also much to be learned by evaluating viral infection dynamics on the single-cell level.

We have developed a microfluidics-based, cell-culturing, imaging, and data-analysis platform that enables high-throughput, kinetic analysis of single, isolated cells infected with a viral population harboring fluorescent reporters. We have observed unprecedented between-cell variation in the onset, speed, and yield of replication, as well as variation in lysis, both if and when lysis occurs. Our studies demonstrate that analysis of viral infection dynamics on the single-cell level yields knowledge about virus-host interactions and the response of the host to viral infection eluded by population methods.


UNC AFFILIATIONS:

Microbiology & Immunology, Virology

CLINICAL/RESEARCH INTERESTS:

Bacteriology, Biochemistry, Biophysics, Cell Biology, Chemical Biology, Drug Discovery, Evolutionary Biology, Genetics, Imaging, Immunology, Metabolism, Microbiology, Molecular Biology, Pathogenesis & Infection, Systems Biology, Translational Medicine, Virology