Skip to main content

Oscillatory behaviors are seen at multiple scales throughout biology and fundamentally require both a biochemical process capable of sustained, repetitive, state transitions and a system to functionally interpret each state. Multicellular organ systems routinely utilize such biorhythmic electrochemicaloscillators to coordinate and order physiological processes. Or group’s primary research interests are focused on: i) the developmental mechanisms that specify autonomous rhythmic signal generation, and ii) the cellular and biophysical processes that allow for effective downstream transmission of these signals.   To address these topics we combine classical experimental embryological approaches with state-of-the-art live cell imaging to investigate the physiological development of the electrical system of the heart.,Oscillatory behaviors are seen at multiple scales throughout biology and fundamentally require both a biochemical process capable of sustained, repetitive, state transitions and a system to functionally interpret each state. Multicellular organ systems routinely utilize such biorhythmic electrochemicaloscillators to coordinate and order physiological processes. Or group’s primary research interests are focused on: i) the developmental mechanisms that specify autonomous rhythmic signal generation, and ii) the cellular and biophysical processes that allow for effective downstream transmission of these signals.   To address these topics we combine classical experimental embryological approaches with state-of-the-art live cell imaging to investigate the physiological development of the electrical system of the heart.


UNC AFFILIATIONS:

Cell Biology & Physiology

CLINICAL/RESEARCH INTERESTS:

Cardiovascular Biology, Cell Biology, Cell Signaling, Developmental Biology, Physiology

Leave a Reply