Skip to main content

My research program is centered on understanding fundamental aspects of cell division. During cell division, complex DNA-protein interactions transform diffuse interphase chromatin into discrete mitotic chromosomes, condensing them several thousand fold to facilitate spatial segregation of sister chromatids. Concomitantly, kinetochores form specifically at centromere regions of chromosomes and regulate force-producing interactions with microtubules. While these processes are absolutely required for genomic stability, the in vivo mechanisms of chromosome and kinetochore assembly remain unsolved problems in biology. I investigate 1) the spatiotemporal regulation of mitotic chromosome assembly, and 2) the molecular basis of centromere specification. To do so, I will combine biochemical approaches with high-resolution light microscopy of live cells, whole organisms, and in vitro systems.,My research program is centered on understanding fundamental aspects of cell division. During cell division, complex DNA-protein interactions transform diffuse interphase chromatin into discrete mitotic chromosomes, condensing them several thousand fold to facilitate spatial segregation of sister chromatids. Concomitantly, kinetochores form specifically at centromere regions of chromosomes and regulate force-producing interactions with microtubules. While these processes are absolutely required for genomic stability, the in vivo mechanisms of chromosome and kinetochore assembly remain unsolved problems in biology. I investigate 1) the spatiotemporal regulation of mitotic chromosome assembly, and 2) the molecular basis of centromere specification. To do so, I will combine biochemical approaches with high-resolution light microscopy of live cells, whole organisms, and in vitro systems.


UNC AFFILIATIONS:

Biochemistry & Biophysics, Biology, Genetics

CLINICAL/RESEARCH INTERESTS:

Biophysics, Cell Biology

Leave a Reply