Skip to main content

We are interested in the cellular and network mechanisms of sensory information processing in the central nervous system, with an emphasis on the neural substrates for hearing. We study functional network organization, synaptic function, the roles of ion channels and cellular excitability, and short and long-term synaptic plasticity, in the auditory brainstem and auditory cortex.  Experimentally, we use patch clamp methods in brain slices, optogenetics and laser scanning photostimulation, multiphoton imaging, and computational neuroscience (modeling), in normal and transgenic mouse models. The lab also has collaborative projects related to schizophrenia (prefrontal cortex; Dr. Patricia Maness, UNC) and connectomics (cochlear nucleus and MNTB; Dr. George Spirou, WVU).,We are interested in the cellular and network mechanisms of sensory information processing in the central nervous system, with an emphasis on the neural substrates for hearing. We study functional network organization, synaptic function, the roles of ion channels and cellular excitability, and short and long-term synaptic plasticity, in the auditory brainstem and auditory cortex.  Experimentally, we use patch clamp methods in brain slices, optogenetics and laser scanning photostimulation, multiphoton imaging, and computational neuroscience (modeling), in normal and transgenic mouse models. The lab also has collaborative projects related to schizophrenia (prefrontal cortex; Dr. Patricia Maness, UNC) and connectomics (cochlear nucleus and MNTB; Dr. George Spirou, WVU).


UNC AFFILIATIONS:

Cell Biology & Physiology, Neurology, Neuroscience Center

CLINICAL/RESEARCH INTERESTS:

Biophysics, Computational Biology, Neurobiology, Physiology

Leave a Reply