Skip to main content

Our laboratory is interested in developing innovative approaches to regenerate or repair an injured heart. Our goal is to understand the molecular basis of cardiomyocyte specification and maturation and apply this knowledge to improve efficiency and clinical applicability of cellular reprogramming in heart disease. To achieve these goals, we utilize in vivo modeling of cardiac disease in the mouse, including myocardial infarction (MI), cardiac hypertrophy, chronic heart failure and congenital heart disease (CHD). In addition, we take advantage of traditional mouse genetics, cell and molecular biology, biochemistry and newly developed reprogramming technologies (iPSC and iCM) to investigate the fundamental events underlying the progression of various cardiovascular diseases as well as to discover the basic mechanisms of cell reprogramming.,Our laboratory is interested in developing innovative approaches to regenerate or repair an injured heart. Our goal is to understand the molecular basis of cardiomyocyte specification and maturation and apply this knowledge to improve efficiency and clinical applicability of cellular reprogramming in heart disease. To achieve these goals, we utilize in vivo modeling of cardiac disease in the mouse, including myocardial infarction (MI), cardiac hypertrophy, chronic heart failure and congenital heart disease (CHD). In addition, we take advantage of traditional mouse genetics, cell and molecular biology, biochemistry and newly developed reprogramming technologies (iPSC and iCM) to investigate the fundamental events underlying the progression of various cardiovascular diseases as well as to discover the basic mechanisms of cell reprogramming.


UNC AFFILIATIONS:

McAllister Heart Institute, Pathology & Lab Medicine

CLINICAL/RESEARCH INTERESTS:

Cardiovascular Biology, Cell Biology, Developmental Biology, Genetics, Molecular Biology

Leave a Reply