Single-cell sequencing identifies novel mechanisms of tumor development and potential avenues for therapies
For the first time, researchers have determined, cell-by-cell, the genetic and epigenetic state of ovarian and endometrial tumors. Scientists at the University of North Carolina Lineberger Comprehensive Cancer Center, who led the research, said this study is an important step forward in developing a better understanding of gynecologic cancers, as every tumor is a collection of different cells growing uncontrollably within its mass. Knowing how cell-to-cell variations affect the biological workings of the tumor is of utmost importance and can lead to new targets for therapeutic interventions.
The findings appeared in print on December 2, 2021, in Molecular Cell.
“The standard of care for many gynecologic cancers is a combination of surgery, chemotherapy and radiation. Despite these aggressive treatments, the majority of women with ovarian cancer experience a recurrence of their disease, highlighting the need to better understand the etiology of the disease in order to develop better targeted therapies,” said UNC Lineberger’s Hector L. Franco, PhD, assistant professor of genetics in the UNC School of Medicine and corresponding author of this article. “To that end, with the improved resolution of the new single-cell sequencing technologies, we can now annotate specific genetic features of tumor cells that had been previously hidden from traditional sequencing technologies.”
This article was originally published by UNC’s Lineberger Comprehensive Cancer Center. Read full article here.