Skip to main content

Research: Histone modifications and epigenetics; core techniques: yeast genetics, peptide synthesis, peptide arrays, mammalian cell culture

Associate Chair of Transition & Planning
Oliver Smithies investigator, Professor
Equity and Inclusion Committee Member

Faculty Director, UNC High-throughput Peptide Synthesis and Array Facility
Co-Director of Chromatin and Epigenetics Program
(PhD – NC State University)


Trained Faculty Mentor endorsed by Office of Graduate Ed UNC Chapel Hill


  • UNC Excellence in Basic Science Mentoring Award, 2019
  • UNC Oliver Smithies Investigator, 2018
  • NIH Maximizing Investigators’ Research Award (MIRA), National Institute of General Medical Sciences, 2018
  • Philip & Ruth Hettleman Prize, 2009
  • NIH Exceptional, Unconventional Research Enabling Knowledge Acceleration (EUREKA) award, 2008
  • Jefferson-Pilot Fellow in Academic Medicine, UNC, 2006
  • North Carolina State University Outstanding Alumnus Award, 2005
  • Schering-Plough Research Institute Award, 2004
  • Presidential Early Career Award for Scientists and Engineers (PECASE), 2003
  • Pew Scholar (Pew Scholars Program in the Biomedical Sciences), 2003


Eukaryotic genomes are packaged into the nuclei of cells through the actions of histone proteins. These proteins not only play a role in condensing the genome but are fundamental to establishing and maintaining chromatin domains such as euchromatin and heterochromatin. Our lab is addressing how chromatin organization achieved and what factors make the underlying DNA permissive to the protein machineries that drive transcription, replication, recombination, and repair. A large body of work shows that histone post-translational modifications are central to the regulation of chromatin structure and function. These modifications, which include acetylation and methylation, decorate histones and function, at least in part, by recruiting chromatin regulatory proteins to the sites of these modifications. Current efforts are aimed at understanding how histone modifications are installed and removed, and how they are interpreted to regulate genome function.


Link to all pubs


Liu, X., Wang, J., Gong, W., Zhao, S., Zhang, C., Jain, K., Guo, Y., Rodriguez, J., Li, M., Shi, X., Tsai, Y.-H., Yan, Q., Strahl, B. D., Wanng, G. G., Kriegsheim, A., V., Baldwin, A. S. & Zhang Q. Histone H3 hydroxylation regulates gene expression in mammalian cells. In Press at Nature Genetics.

Klein, B. J, Feigerle, J. T., Zhnag, J., Ebmeier, C. C., Fan, L., Singh, R. K., Wang, W. W., Schmitt, L. R., Lee, T., Hansen, K. C., Liu, W. R., Wang, Y-.X., Strahl, B. D., Weil, P. A., Kornberg, R., D. & Kutateladze, T., G. (2022) Taf2 mediates DNA binding of Taf14. Nat Commun. 13:3177.

Niedzialkowska, E., Liu, L., Kuscu, C., Mayo, Z., Minor, W., Strahl, B. D., ldi, M. & Stukenberg, P. T. (2022) Tip60 acetylation of histone H3K4 temporally controls Chromosome Passenger Complex localization. Mol Biol Cell. mbcE21060283.

Tencer, A. H., Liu, J., Zhu, J., Burkholder, N. T., Zhang, Y, Wu, W., Strahl, B. D., Ohta T. & Kutateladze, T. G. (2022) The ZZ domain of HERC2 is a receptor of arginylated substrates. Scientific Reports. 12:6063.

Crain, A. T., Klusza, S., Armstrong, R. L., Rosa, P. S., Temple, B. R. S., Strahl, B. D., McKay, D. J., Matera, A. G. & Duronio, R. J. (2022) Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Genetics. 221:iyac054.

Falcinelli, S. D., Peterson, J. J., Turner, A.-M. W., Irlbeck, D., Read, J., Raines, S. L. M., James, K. S., Sutton, C., Sanchez, A., Emery, A., Sampey, G., Ferris, R., Allard, B., Ghofrani, S., Kirchherr, J., Baker, C., Kuruc, D., J., Gay, C. L., James, L. I., Wu, G., Zuck, P., Rioja, I., Furze, R. C., Prinjha, R. K., Howell, B., Swanstrom, R., Browne, E. P., Strahl, B. D., Dunham, R. M., Archin, N. M. & Margolis, D. (2022) Combined non-canonical NF-κB agonism and targeted BET bromodomain inhibition reverses HIV latency ex vivo. J Clin Invest. 132:e157281.


Zhang, J., Gundu, A. & Strahl, B. D. (2021) Recognition of acetylated histone by Yaf9 regulates metabolic cycling of transcription initiation and chromatin regulatory factors. Genes & Dev. 35:1678-1692.

Petell, C., J., Randene, K., Pappas, M., Sandoval, D., Strahl, B. D., Harrison, J. S. & Steimel, J. P. (2021) Measuring biological interactions with magnetic probes. ELife. 10:e67525.

Enríquez, P., Krajewski, K., Strahl, B. D., Rothbart, S. B., Dowen, R. H. & Rose, R. B. (2021) Binding specificity and function of the SWI/SNF subunit SMARCA4 bromodomain with acetylated histone H3K14. J Biol Chem.297:101145.

Yoblinski, A. R., Forester, K., E., Chung, S., Robinson, Strahl, B. D.* & Dronamraju, R.* Catalysis-Dependent and Redundant Roles of Dma1 and Dma2 in Maintenance of Genome Stability in Saccharomyces cerevisiaeJ Biol Chem. 296:100721.

Ren, W., Fan, H., Grimm, S., Kim, J. J., Li, L., Guo, Y., Petell, C. Tan, X.-F., Zhnag, Z.-M., Coan, J., Yin, J., Kim, D. I., Gao, L., Cai, L., Khudaverdyan, N. N., Cetin, B., Patel, D., Wang, Y., Cui, Q., Strahl, B. D. , Gozani, O., Miller, K., O’leary, S., Wade, P., Wang, G. G. & Song, J. (2021) DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nature Communications. 12:2490.

Jain, K & Strahl, B. D. (2021) Oncohistones: corruption at the core. Nat Chem Biol. 17:370-371.

Slaughter, M. J., Shanle, E. K., Khan, A., Chua, K. F., Hong, T., Boxer, L. D., Allis, C. D., Josefowicz, S. Z., Garcia, B. A., Rothbart, S. B, Strahl, B. D.* & Davis, I. J.* (2021) HDAC inhibitors result in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Reports. 34:108638.

Lab Contact

3060 Genetic Medicine

CB #7260

Chapel Hill, NC 27599

Office Phone: 919.843.3896 Lab Phone: 919.843.3935

Brian Strahl
  • Biochemistry & Biophysics