Skip to main content

Acknowledgment and citing the CryoEM Core

The CryoEM core is part to the UNC Chapel Hill Center for Structural Biology that receives ongoing support from the UNC Lineberger Comprehensive Cancer Center, specifically through the University Cancer Research Fund and the Cancer Center Support Grant.   All publications from the UNC Center for Structural Biology, including the CryoEM Core, must credit NIH grant P30CA016086.

 

Suggested acknowledgement: “CryoEM experiments were carried out at UNC CryoEM Core Facility, we thank — insert person name– for technical assistance in this project. This work was supported by the National Cancer Institute of the National Institutes of Health under award number P30CA016086.”

 

Collaboration or Fee-for-Service

We consider the following as routine fee-for-service (1) Cryo-grid specimen preparation, (2) CryoEM screening and data collection, (3) pre-processing of data, (4) fabrication of support films for TEM grids, and (4) training customers.  We follow the guidelines as described by the UNC CH Research Code of Conduct and National Institutes of Health (NIH) General Guidelines for Authorship Contributions. If a staff member significantly contributes to the conceptualization, design, interpretation of the research project, they will be deemed a collaborator.  This policy extends to encompass non-routine activities, such as the fabrication of novel TEM grids, the development of novel workflows or methods, sample purification, image processing and data analysis. In such instances, the staff member must be acknowledged as a collaborator in all ensuing publications or presentations

 

List of CryoEM Core publications

2020

  1. Boyer, J.A., et al., Structural basis of nucleosome-dependent cGAS inhibition. Science, 2020. 370(6515): p. 450-454.

2021

  1. Cao, C., et al., Structure, function, and pharmacology of human itch GPCRs. Nature, 2021. 600(7887): p. 170-175.
  2. Marulanda, K., et al., Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice.Adv Healthc Mater,     2021. 10(13): p. e2100302.

2022

  1. L. A. Aleksandrov, A. A. Aleksandrov, T. J. Jensen, J. D. Strauss, J. F. Fay, Conformational Variability in Ground-State CFTR Lipoprotein Particle Cryo-EM Ensembles. Int J Mol Sci 23, (2022).
  2. B. P. Allen et al., Mapping the Morphological Landscape of Oligomeric Di-block Peptide-Polymer Amphiphiles. Angew Chem Int Ed Engl 61, e202115547 (2022).
  3. T. Bepler et al., Smart data collection for CryoEM. J Struct Biol 214, 107913 (2022).
  4. G. R. Budziszewski et al., Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res 50, 4355-4371 (2022).
  5. R. H. Gumpper, J. F. Fay, B. L. Roth, Molecular insights into the regulation of constitutive activity by RNA editing of 5HT(2C) serotonin receptors. Cell Rep 40, 111211 (2022).
  6. S. Kumar et al., Structural basis of NPR1 in activating plant immunity. Nature 605, 561-566 (2022).
  7. C. Lim et al., Drug-Dependent Morphological Transitions in Spherical and Worm-Like Polymeric Micelles Define Stability and Pharmacological Performance of Micellar Drugs. Small 18, e2103552 (2022).
  8. Y. Liu et al., Ligand recognition and allosteric modulation of the human MRGPRX1 receptor. Nat Chem Biol, (2022).
  9. R. P. McNamara et al., Imaging of surface microdomains on individual extracellular vesicles in 3-D. J Extracell Vesicles 11, e12191 (2022).
  10. E. A. Partlow, K. S. Cannon, G. Hollopeter, R. W. Baker, Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. Nat Struct Mol Biol 29, 339-347 (2022).
  11. J. V. Peck, J. F. Fay, J. D. Strauss, High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ 9, 243-252 (2022).
  12. Z. Ren et al., Structural basis for inhibition and regulation of a chitin synthase from Candida albicans. Nat Struct Mol Biol 29, 653-664 (2022).
  13. V. Simões et al., Redox-sensitive E2 Rad6 controls cellular response to oxidative stress via K63-linked ubiquitination of ribosomes. Cell Rep 39, 110860 (2022).
  14. B. A. Travis et al., Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 13, 3793 (2022).
  15. Y. Yin et al., Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP(2). Science 378, eadd1268 (2022).
  16. S. Zhang et al., Inactive and active state structures template selective tools for the human 5-HT(5A) receptor. Nat Struct Mol Biol 29, 677-687 (2022).
  17. S. Zhang et al., Molecular basis for selective activation of DREADD-based chemogenetics. Nature 612, 354-362 (2022).

2023

  1. Bennett, A.L., et al., Microsecond dynamics control the HIV-1 envelope conformation. bioRxiv, 2023.
  2. Gunn, K.H. and S.B. Neher, Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site. Nat Commun, 2023. 14(1): p. 2569.
  3. Han, J., et al., Ligand and G-protein selectivity in the kappa-opioid receptor. Nature, 2023. 617(7960): p. 417-425.
  4. K, S.C., et al., Lipid nanodiscs as a template for high-resolution cryo-EM structures of peripheral membrane proteins. J Struct Biol, 2023. 215(3): p. 107989.
  5. Krumm, B.E., et al., Neurotensin Receptor Allosterism Revealed in Complex with a Biased Allosteric Modulator. Biochemistry, 2023. 62(7): p. 1233-1248.
  6. Kumar, S., et al., Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY. Nat Commun, 2023. 14(1): p. 1538.
  7. Schumacher, M.A., et al., M. mazei glutamine synthetase and glutamine synthetase-GlnK1 structures reveal enzyme regulation by oligomer modulation. Nat Commun, 2023. 14(1): p. 7375.
  8. Spangler, C.J., et al., Structural basis of paralog-specific KDM2A/B nucleosome recognition. Nat Chem Biol, 2023. 19(5): p. 624-632.
  9. Suo, Y., et al., Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2. Nat Struct Mol Biol, 2023. 30(7): p. 1001-1011.

2024

  1. Kim, Y., et al., Bitter taste receptor activation by cholesterol and an intracellular tastant. Nature, 2024. 628(8008): p. 664-671.
  2. Chien, D.C., et al., MRGPRX4 mediates phospho-drug-associated pruritus in a humanized mouse model. Sci Transl Med, 2024. 16(746): p. eadk8198.
  3. Knight, K.M., et al., A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state. Nature Communications. 2024 Aug;15(1):6643.
  4. Wang, C., et al., High-affinity agonists reveal recognition motifs for the MRGPRD GPCR. Cell Reports. 2024 Dec;43(12):114942.
  5. Bennett A.L, et al., Microsecond dynamics control the HIV-1 Envelope conformation. Sci Adv. 2024 Feb 2;10(5):eadj0396.
  6. Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2411974121.
  7. Kang HJ, Krumm BE, Tassou A, Geron M, DiBerto JF, Kapolka NJ, Gumpper RH, Sakamoto K, Dewran Kocak D, Olsen RHJ, Huang XP, Zhang S, Huang KL, Zaidi SA, Nguyen MT, Jo MJ, Katritch V, Fay JF, Scherrer G, Roth BL. Structure-guided design of a peripherally restricted chemogenetic system. Cell. 2024 Dec 26;187(26):7433-7449.e20.

2025

  1. Gumpper R.H., et al., The structural diversity of psychedelic drug actions revealed. Nature Communications. 2025 Mar;16(1):2734.
  2. Skrajna A., et al., APC/C-mediated ubiquitylation of extranucleosomal histone complexes lacking canonical degrons. Nature Communications. 2025 Mar;16(1):2561.
  3. Lin CC, Zhao Y, Foley CA, Hawkins AT, James LI, Frye SV, McGinty RK. Structural mechanism of H3K27 demethylation and crosstalk with heterochromatin markers. Mol Cell. 2025 Aug 7;85(15):2869-2884.e6.
  4. Gunn KH, Wheless A, Calcraft T, Kreutzberger M, El-Houshy K, Egelman EH, Rosenthal PB, Neher SB. Cryogenic electron tomography reveals helical organization of lipoprotein lipase in storage vesicles. Sci Adv. 2025 Aug 8;11(32):eadx8711.
  5. Attia MF, Marasco RN, Kwain S, Foxx C, Whitehead DC, Kabanov A, Lee YZ. Toward the clinical translation of safe intravenous long circulating ILNEs contrast agent for CT imaging. Theranostics. 2025 Mar 21;15(10):4550-4565. doi: 10.7150/thno.110014. PMID: 40225570; PMCID: PMC11984398.
  6. Jain MK, Gumpper RH, Slocum ST, Schmitz GP, Madsen JS, Tummino TA, Suomivuori CM, Huang XP, Shub L, DiBerto JF, Kim K, DeLeon C, Krumm BE, Fay JF, Keiser M, Hauser AS, Dror RO, Shoichet B, Gloriam DE, Nichols DE, Roth BL. The polypharmacology of psychedelics reveals multiple targets for potential therapeutics. Neuron. 2025 Oct 1;113(19):3129-3142.e9. doi: 10.1016/j.neuron.2025.06.012. Epub 2025 Jul 18. PMID: 40683247.
  7. Fay JF, Kousouros J, Gao ZG, Pavan M, Oliva P, Pramanik A, Meyer C, Kurma SH, Xu W, Krumm B, Jacobson KA. UDP-glucose and MRS2905 agonist-bound states of the purinergic P2Y14 receptor. Commun Biol. 2025 Nov 21. doi: 10.1038/s42003-025-09174-6. Epub ahead of print. PMID: 41272298.
  8. Varga BR, Bernhard SM, El Daibani A, Zaidi SA, Lam JH, Aguilar J, Appourchaux K, Nazarova AL, Kouvelis A, Shinouchi R, Hammond HR, Eans SO, Weinreb V, Margolis EB, Fay JF, Huang XP, Pradhan A, Katritch V, McLaughlin JP, Majumdar S, Che T. Structure-guided design of partial agonists at an opioid receptor. Nat Commun. 2025 Mar 13;16(1):2518. doi: 10.1038/s41467-025-57734-5. PMID: 40082451; PMCID: PMC11906898.
  9. Skrajna A, Lenger C, Robinson E, Cannon K, Sarsam R, Ouellette RG, Abotsi AM, Brennwald P, McGinty RK, Strauss JD, Baker RW. Nickel-NTA lipid-monolayer affinity grids allow for high-resolution structure determination by cryo-EM. J Struct Biol. 2025 Oct 11;217(4):108253. doi: 10.1016/j.jsb.2025.108253. Epub ahead of print. PMID: 41083086.