Skip to main content

Acknowledgment and citing the CryoEM Core

Please acknowledge the contributions of our staff and the use of our core facility in your publications.

“We acknowledge Emily Robinson and Dr. Joshua Strauss of the UNC CryoEM Core Facility for technical assistance in this project”

“Data was collected at the UNC at Chapel Hill CryoEM Core Facility with a 200 keV Thermo Fisher Scientific Talos Arctica G3 equipped with a Gatan K3 direct electron detector as described.[1]

    1. Peck, J.V., J.F. Fay, and J.D. Strauss, High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ, 2022. 9(Pt 2): p. 243-252.


List of CryoEM Core publications


  1. Boyer, J.A., et al., Structural basis of nucleosome-dependent cGAS inhibition. Science, 2020. 370(6515): p. 450-454.


      1. Cao, C., et al., Structure, function and pharmacology of human itch GPCRs. Nature, 2021. 600(7887): p. 170-175.

2. Lim, C., et al., Drug-Dependent Morphological Transitions in Spherical and Worm-Like Polymeric Micelles Define Stability


  1. L. A. Aleksandrov, A. A. Aleksandrov, T. J. Jensen, J. D. Strauss, J. F. Fay, Conformational Variability in Ground-State CFTR Lipoprotein Particle Cryo-EM Ensembles. Int J Mol Sci 23, (2022).
  2. B. P. Allen et al., Mapping the Morphological Landscape of Oligomeric Di-block Peptide-Polymer Amphiphiles. Angew Chem Int Ed Engl 61, e202115547 (2022).
  3. T. Bepler et al., Smart data collection for CryoEM. J Struct Biol 214, 107913 (2022).
  4. G. R. Budziszewski et al., Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res 50, 4355-4371 (2022).
  5. R. H. Gumpper, J. F. Fay, B. L. Roth, Molecular insights into the regulation of constitutive activity by RNA editing of 5HT(2C) serotonin receptors. Cell Rep 40, 111211 (2022).
  6. S. Kumar et al., Structural basis of NPR1 in activating plant immunity. Nature 605, 561-566 (2022).
  7. C. Lim et al., Drug-Dependent Morphological Transitions in Spherical and Worm-Like Polymeric Micelles Define Stability and Pharmacological Performance of Micellar Drugs. Small 18, e2103552 (2022).
  8. Y. Liu et al., Ligand recognition and allosteric modulation of the human MRGPRX1 receptor. Nat Chem Biol, (2022).
  9. R. P. McNamara et al., Imaging of surface microdomains on individual extracellular vesicles in 3-D. J Extracell Vesicles 11, e12191 (2022).
  10. E. A. Partlow, K. S. Cannon, G. Hollopeter, R. W. Baker, Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. Nat Struct Mol Biol 29, 339-347 (2022).
  11. J. V. Peck, J. F. Fay, J. D. Strauss, High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ 9, 243-252 (2022).
  12. Z. Ren et al., Structural basis for inhibition and regulation of a chitin synthase from Candida albicans. Nat Struct Mol Biol 29, 653-664 (2022).
  13. V. Simões et al., Redox-sensitive E2 Rad6 controls cellular response to oxidative stress via K63-linked ubiquitination of ribosomes. Cell Rep 39, 110860 (2022).
  14. B. A. Travis et al., Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 13, 3793 (2022).
  15. Y. Yin et al., Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP(2). Science 378, eadd1268 (2022).
  16. S. Zhang et al., Inactive and active state structures template selective tools for the human 5-HT(5A) receptor. Nat Struct Mol Biol 29, 677-687 (2022).
  17. S. Zhang et al., Molecular basis for selective activation of DREADD-based chemogenetics. Nature 612, 354-362 (2022).