Skip to main content

Drs. Jan Hermans and Barry Lentz have published a new textbook that progressively builds a deep understanding of macromolecular behavior.

image2
Book Cover
image3
Jan Hermans & Barry Lentz

Based on each of the authors’ roughly forty years of biophysics research and teaching experience, this text instills readers with a deep understanding of the biophysics of macromolecules. It sets a solid foundation in the basics by beginning with core physical concepts such as thermodynamics, quantum chemical models, molecular structure and interactions, and water and the hydrophobic effect. Next, the book examines statistical mechanics, protein-ligand binding, and conformational stability. Finally, the authors address kinetics and equilibria, exploring underlying theory, protein folding, and stochastic models.

With its strong emphasis on molecular interactions, Equilibria and Kinetics of Biological Macromolecules offers new insights and perspectives on proteins and other macromolecules. The text features coverage of:

  • Basic theory, applications, and new research findings
  • Related topics in thermodynamics, quantum mechanics, statistical mechanics, and molecular simulations
  • Principles and applications of molecular simulations in a dedicated chapter and interspersed throughout the text
  • Macromolecular binding equilibria from the perspective of statistical mechanics
  • Stochastic processes related to macromolecules

For more information or to buy the book go to: Wiley Publishing

JAN HERMANS, PhD, is Emeritus Professor in the Department of Biochemistry and Biophysics at the University of North Carolina at Chapel Hill. He is the author of over 130 papers in the field of protein and macromolecular biophysics.

BARRY LENTZ, PhD, is Professor in the Department of Biochemistry and Biophysics at the University of North Carolina at Chapel Hill and Director of the UNC Molecular & Cellular Biophysics Program. He has authored roughly 130 original research publications in the field of biophysics, focusing on biomembrane microstructure and cell function.